Residential Development at Bearna, for Burkeway Homes Limited PROJECT NO. B861 September 2020

Multidisciplinary Consulting Engineers

Residential Development at Bearna, for Burkeway Homes Limited

> PROJECT NO. B861 September 2020

TABLE OF CONTENTS

1 INT	RODUCTION1												
1.1	Appointment1												
1.2	Administrative Jurisdiction1												
1.3	Site Location1												
1.4	Existing Site Overview2												
1.5	Proposed Development Context												
2 SC	OPE OF SERVICES REPORT4												
3 SU	RFACE WATER DRAINAGE6												
3.1	Overview6												
3.2	Existing Site Drainage6												
3.2.2	1 Existing Site Catchment Areas6												
3.2.2	2 Existing Surface Water Drainage Infrastructure7												
3.2.3	3 Existing Site Rainfall Runoff7												
3.3	Proposed Surface Water Drainage Design Strategy9												
3.3.3	Proposed Surface Water Strategy Overview9												
3.3.2	2 Proposed Surface Water Design Criteria9												
3.3.3	Proposed Surface Water Catchment Areas												
3.3.4	4 Proposed Development Rainfall Runoff												
3.3.5	5 Proposed Surface Water Pipe Network Design												
3.3.6	5 Proposed Surface Water Attenuation Storage												
3.4	Specific SuDS Measures Proposed11												
3.5	Taking in Charge13												
3.6	Maintenance13												
3.7	Surface Water Impact Assessment												
3.8	Criterion 1 – River Water Quality Protection13												
3.9	Criterion 2 – River Regime Protection14												
3.10	Criterion 3 – Level of Service (Flooding) Site14												
3.10	.1 Sub-Criterion 3.1												

PAGE

3.1	0.2	Sub-Criterion 3.215
3.1	0.3	Sub-Criterion 3.315
3.1	0.4	Sub-Criterion 3.415
3.11	Criterion 4	– River Flood Protection
4 W.	ASTEWATE	R DRAINAGE
4.1		
4.2	Existing W	astewater Drainage
4.3	Proposed V	Wastewater Drainage Network17
4.4	Taking In C	Charge
4.5	Calculation	ns
_		TER SUPPLY
5.1		n to the Existing Network
5.2		ing Devices
-		
5.3	Water Me	ters
6 RC	DAD DESIG	SN21
6.1	Road Desig	gn Standards21
6.2	Road Class	ification21
6.3	Road Desig	gn Speeds
6.4	Horizontal	and Vertical Geometry24
6.5	Cross Secti	on24
6.6	Proposed I	Development Access
6.7	Road Safet	y Audit
	NDICES	
	ENDIX A.	QBAR RUNOFF CALCULATIONS
APPI	ENDIX B.	
		WASTEWATER CALCULATIONS & DESIGN NETWORK TABLES
		IRISH WATER CORRESPONDENCE

- APPENDIX E. TECHNICAL NOTE ON ROAD WIDTH
- APPENDIX F. ROAD SAFETY AUDIT REPORT

1 INTRODUCTION

1.1 Appointment

O'Connor Sutton Cronin & Associates (OCSC) have been appointed by *Burkeway Homes Limited*; to carry out civil and structural engineering design including transportation, roads, drainage, water utilities, and detailed design. The project includes 121 nr. unit residential development and 1nr. crèche and associated services at Bearna, Co. Galway.

1.2 Administrative Jurisdiction

The proposed development is located in the jurisdiction of Galway County Council, and therefore the flood risk assessment was carried out with reference to the following:

- Variation No.2(a) of the Galway County Development Plan (2015 2021);
- Greater Dublin Strategic Drainage Study (GDSDS);
- The Planning System and Flood Risk Management Guidelines for Planning Authorities (Department of Environment, Heritage and Local Government and the Office of Public Works);
- Flood Risk Management Plan, Galway Bay North (2018).

It is noted that due to the number of residential units proposed as part of the proposed development, the planning permission is sought through An Bord Pleanála's (ABP) Strategic Housing Development (SHD) application process.


1.3 Site Location

The subject site is located in the northern environs of the Bearna region, which is approximately 7km west of Galway City and approximately 690m north from the Galway Bay northern coastline. The site is immediately bound by:

- Existing residential units to the west and southwest;
- Trusky East Stream, to the east;

• Vacant lands to the north and south.

Figure 1.1 - Site Location (www.myplan.ie, discovery series mapping)

1.4 Existing Site Overview

The overall site area is c.5.38 -hectares, the net site area is c.3.47-hectares and is accessed through Cnoc Fraoigh residential estate road, with an approximate level of 16.1m AOD at the entrance. The site is quite steeply graded from the north (+24.0m AOD) to the southeast (+14.5m AOD), with levels along the western boundary typically +22.5m AOD to +15.1m AOD. The Trusky stream is immediately east of the site's boundary, which is similarly steeply graded, from north to south.

The proposed site is currently a green field and is not in use.

1.5 Proposed Development Context

The proposed development will consist of the construction of 121 nr. residential units, a crèche, and associated landscaping and infrastructure. The new residential units are to comprise:

- 52 nr. houses;
- 36 nr. duplexes;
- 33 nr. apartments.

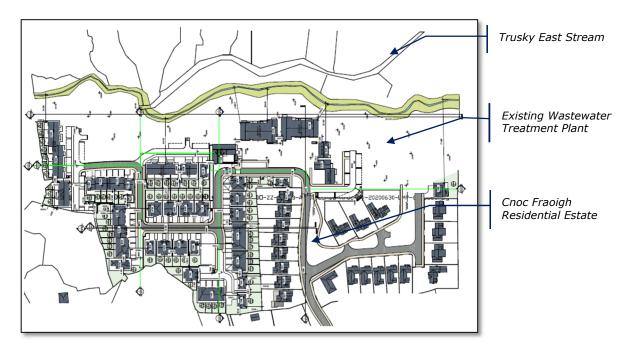


Figure 1.2 - Proposed Site Layout

Project: B861 Issued: 13.07.2020

2 SCOPE OF SERVICES REPORT

This Engineering Services Report was prepared by reviewing the available data from the Local Authority sources and national bodies *i.e.* Galway County Council, Irish Water, The OPW, and the wider design team. The report addresses the following services with respect to the proposed development:

- Surface Water Drainage;
- Wastewater Drainage;
- Potable Water Supply;
- Road Design.

This report should be read in conjunction with the OCSC Civil Engineering design drawings that accompany this submission. The proposed design, for the aforementioned services, have been carried out in accordance with the following technical guidelines and information:

- Galway County Development Plan 2015 2021
- Variation No.2(a) Galway County Development Plan 2015-2021;
- Greater Dublin Strategic Drainage Study (GDSDS);
- Greater Dublin Regional Code of Practice for Drainage Works (GDRCOP);
- Irish Water Code of Practice for Wastewater, IW-CDS-5030-03;
- Irish Water Code of Practice for Water Supply, IW-CDS-5020-03;
- The Building Regulations Technical Guidance Document Part H;
- BE EN 752 Drainage Outside Buildings;
- BS 7533-13 Guide for Design of Permeable Pavements;
- The Office of Public Works, The Planning System & Flood Risk Management;
- Galway County Council and Irish Water Drainage and Water main Records;
- Department of Transport, Design Manual for Urban Streets
- Department of Transport, Traffic Signs Manual.
- DN-PAV-03021: Pavement & Foundation Design;
- GE-STY-01024: Road Safety Audit;
- NRA Design Manual for Roads and Bridges (NRA DMRB);

Members of the wider design team cover all other elements of the application pertaining to traffic, flood risk, sustainability, landscaping, planning and architectural detail.

3 SURFACE WATER DRAINAGE

3.1 Overview

Any planning permission sought on the subject lands are required to adhere to the Local Authority requirements, the Galway County Development Plan 2015-2021 and as such, the Greater Dublin Strategic Drainage Study (Dublin City Council, 2005).

New development must ensure that a comprehensive Sustainable Drainage System, SuDS, is incorporated into the development. SuDS requires that post development run-off rates be maintained at equivalent, or lower, levels than pre-development levels. Thus, the development must be able to retain, within its boundaries, surface water volumes from extreme rainfall events up to a 1 in 100-year rainfall event, more commonly expressed as a 1.0% AEP (Annual Exceedance Probability), *while also allowing for an additional climate change factor of 20% increase in rainfall intensity*. Any new development must also have the physical capacity to retain surface water volumes as directed under the Greater Dublin Strategic Drainage Strategy (GDSDS) and, if necessary, release these attenuated surface water volumes to an outfall at a controlled flow rate.

A further component of the SuDS protocol is to increase the overall water quality of surface water runoff before it enters a natural watercourse or a public sewer, which ultimately discharges to a water body. This is to ensure the highest possible standard of surface water quality.

3.2 Existing Site Drainage

3.2.1 Existing Site Catchment Areas

As detailed in *Section 1.4*, the existing c.3.48-hectare site is currently green field. Refer to Figure 3.1 for aerial image of the proposed site, for context. The site is steeply graded from north to southeast with the prominent Trusky East Stream located alongside the eastern site boundary.

Figure 3.1 - Existing Site, Aerial Overview (Google Earth) 3.2.2 Existing Surface Water Drainage Infrastructure

There is no available existing surface water drainage infrastructure in the vicinity of the proposed development. However, the Trusky East Stream aligns the eastern boundary of the proposed development, which discharges to the sea at the northern coastline of Galway Bay, approximately 690m south from the proposed development site.

3.2.3 Existing Site Rainfall Runoff

All surface water runoff, on the existing site, currently infiltrates to the natural ground or discharges to the Trusky East Stream, which in turn discharges to sea at Galway Bay, approximately 500m south from the proposed development. Refer to *Section 1.4* and *Section 3.3.1* for further details of existing site context.

Project: B861 Issued: 13.07.2020

Using the ICPSuDS Input, (Flood Studies Report (FSR) Method, the rainfall runoff discharging from the greenfield site area that is to be developed in its existing condition has been estimated at QBAR_{RURAL} = 19.3 l/s (**5.5 l/s/ha**). Refer to *Figure 3.2* for an excerpt of the results from the MicroDrainage Runoff Calculator, which also provides the calculated QBAR runoff rate along with the discharge rate for varying Annual Recurrence Intervals (ARI).

	ICP SUDS							
Micro Drainage	ICP SUDS Input (FSR M		Results					
bioinage	Return Period (Years)		Partly l	Jrbanised Ca	R)	QBAR rural (/s)	
	Area (ha) 3	.470	Urban		0.000		19.3	
	SAAR (mm) 1	230		Ireland West			QBAR urban (
	Map	.370	Region	Ireland west	t v			(i/s)
		.370					19.3	
	Growth Curve		(None)		Calcul	ate		
	Return Period Flood							
	Return Period Flood	OPAP	Q (5urs)	0 (1 vrs)	Q (30 yrs)	Q (100 yrs)]	^
IH 124	Return Period Flood Region	QBAR (I/s)	Q (5yrs) (I/s)	Q (1 yrs) (l/s)	Q (30 yrs) (I/s)	Q (100 yrs) (I/s)		^
IH 124 ICP SUDS	Region	(l/s)	(l/s)	(l/s)	(l/s)	(l/s)		
	Region Region 6/Region 7	(I/s) 19.3	(l/s) 24.7	(I/s) 16.4	(I/s) 43.7	(I/s) 61.5		
ICP SUDS	Region Region 6/Region 7 Region 8 Region 9 Region 10	(I/s) 19.3 19.3 19.3 19.3 19.3	(Ws) 24.7 23.7 23.3 22.9	(I/s) 16.4 15.0 17.0 16.8	(I/s) 43.7 36.7 34.0 32.7	(I/s) 61.5 46.7 42.0 40.1		
ICP SUDS ADAS 345 FEH	Region Region 6/Region 7 Region 8 Region 9 Region 10 Ireland National	(I/s) 19.3 19.3 19.3 19.3 19.3 19.3	(Ws) 24.7 23.7 23.3 22.9 23.1	(1/s) 16.4 15.0 17.0 16.8 16.4	(I/s) 43.7 36.7 34.0 32.7 30.6	(I/s) 61.5 46.7 42.0 40.1 35.5		
ICP SUDS ADAS 345	Region Region 6/Region 7 Region 8 Region 9 Region 10 Ireland National Ireland East	(I/s) 19.3 19.3 19.3 19.3 19.3 19.3 19.3	(Vs) 24.7 23.7 23.3 22.9 23.1 23.3	(1/s) 16.4 15.0 17.0 16.8 16.4 16.4	(I/s) 43.7 36.7 34.0 32.7 30.6 31.4	(l/s) 61.5 46.7 42.0 40.1 35.5 36.6		
ICP SUDS ADAS 345 FEH ReFH2	Region Region 6/Region 7 Region 8 Region 9 Region 10 Ireland National Ireland East Ireland South	(1/s) 19.3 19.3 19.3 19.3 19.3 19.3 19.3 19.3	(Vs) 24.7 23.7 23.3 22.9 23.1 23.3 22.9	(Vs) 16.4 15.0 17.0 16.8 16.4 16.4 16.4	(I/s) 43.7 36.7 34.0 32.7 30.6 31.4 30.6	(I/s) 61.5 46.7 42.0 40.1 35.5 36.6 35.5	_	
ICP SUDS ADAS 345 FEH	Region Region 6/Region 7 Region 8 Region 9 Region 10 Ireland National Ireland East	(I/s) 19.3 19.3 19.3 19.3 19.3 19.3 19.3	(Vs) 24.7 23.7 23.3 22.9 23.1 23.3	(1/s) 16.4 15.0 17.0 16.8 16.4 16.4	(I/s) 43.7 36.7 34.0 32.7 30.6 31.4	(l/s) 61.5 46.7 42.0 40.1 35.5 36.6]	

Figure 3.2 - Existing Site Runoff Calculator Results (MicroDrainage Excerpt)

3.3 Proposed Surface Water Drainage Design Strategy

3.3.1 Proposed Surface Water Strategy Overview

It is proposed to separate the surface water and wastewater drainage networks, which will serve the proposed development, and provide independent connections to the adjacent watercourse and local wastewater sewer network respectively. Refer to *Section 4* for details of the proposed wastewater drainage design.

3.3.2 Proposed Surface Water Design Criteria

The proposed surface water network has been designed in accordance with the regulations and guidelines outlined in *Section 2*. Rainfall design data, such as return period rainfall depths for sliding durations and the standard annual average rainfall (SAAR) value were sourced from Met Éireann.

📑 Design Criteria		- • 💌
UKRainfall	Design	
FSR Rainfall 🗸	Pipes STANDARD	Micro Drainage
Return Period (years) 5	Manholes STANDARD	ОК
Region Scotland and Ireland V	Level Level Soffits 🗸	Cancel
Map M5-60 (mm) 15.000 Ratio R 0.246	Additional Flow / Climate Change (%) 20	Help
	Min. Backdrop Height (m) 0.200	Default
	Max. Backdrop Height (m) 1.500	
	Min. Design Depth for optimisation (m) 1.200	
Inflow	Min. Velocity for Auto Design only (m/s) 1.00	
Global Time of Entry (mins) 4.00	Min. Slope for Optimisation (1:X) 500	
Max. Rainfall (mm/hr) 50		
Max. Time of Conc. (mins) 30		
Foul Sewage per hectare (1/s) 0.000		
PIMP (%)		
Volumetric Run-off Coeff. 0.750		

Figure 3.3 – Surface Water Design Criteria (MicroDrainage Excerpt)

Project: B861 Issued: 13.07.2020

As indicated in *Figure 3.3*, the proposed network was designed to allow for an additional 20% increase in rainfall intensity, to allow for Climate Change, in accordance with the Galway County Council Development Plan and the GDSDS.

3.3.3 Proposed Surface Water Catchment Areas

Due to the natural topography of the existing site, the proposed development has been divided into two independent surface water catchments (Catchment 1 and Catchment 2), each discharging attenuated flows to the Trusky East Stream. Refer to design layout drawing **B861-OCSC-XX-XX-C-DR-0501** for information.

For the purpose of the surface water network design simulation, we have considered all external (roads, pavement, and roofs) areas as being 100% impermeable, with car parking bays that are comprised of permeable paving with a drainage layer base course being assigned 80% impermeability. A <u>winter</u> global runoff coefficient, C_v , of 0.84, in accordance with the HR Wallingford and Modified Rational Method for runoff is applied.

3.3.4 Proposed Development Rainfall Runoff

It is proposed to reduce and restrict the rainfall runoff, discharging from the proposed development, to the greenfield equivalent, QBAR_{RURAL}, runoff rate, as per the FSR ICP SuDS method, which is based on the IH124 method for catchments smaller than 25km² in area.

This is to be achieved with the provision of a flow restrictor (Hydro-Brake Optimum by Hydro-International, or similar approved) prior to discharging to the existing open drains at the north western corner of the site, with the appropriate measures of attenuation provided. Sub-catchment flow-control devices and associated attenuation are also to be strategically provided, in order to maximise SuDS benefits and avail of the central open space for preliminary attenuation.

Refer to *Figure 3.2* for an excerpt from the results MicroDrainage Runoff Calculator for the development catchment area (c.3.47-hectares), which indicates the greenfield equivalent, QBAR_{RURAL}, value of <u>19.3 I/s</u> (5.5 I/s/ha)

along with the calculated runoff for varying Average Recurrence Intervals (ARI).

3.3.5 Proposed Surface Water Pipe Network Design

The overall surface water drainage system, serving the proposed development, is to consist of a gravity sewer network that will convey runoff from the roofs and paved areas to the outfall manholes, which will discharge controlled flow rates to the Trusky East Stream, to the east of the proposed development.

The proposed piped-network has been designed in accordance with BS EN 752 and all new infrastructure is to be compliant with the requirements of the GDSDS and the GDRCOP for Drainage Works, with minimum full bore velocities of 1.0 m/s achieved throughout.

All main surface water carrier pipes have been sized to ensure no surcharging of the proposed drainage network for rainfall events up to, and including, the 1 in 5-year ARI event, with a projected climate change allowance of 20% increase in rainfall intensity.

3.3.6 Proposed Surface Water Attenuation Storage

Temporary underground attenuation is to be provided at two separate locations, in order to restrict discharge rates from the development's surface water network to the greenfield equivalent flow rate. The attenuation has been designed to temporarily store the surface water runoff for design rainfall events up to, and including, the 1% AEP with a 20% increase in rainfall intensity.

This is to be provided in the form of underground cellular storage units, such as the Stormtech DC-780 Storage Chambers, with cl/503 material surround, or similar approved. An isolator row and manifold pipe will be provided as part of the attenuation system, in order which provide for a more efficient system and quality access for inspection and maintenance.

3.4 Specific SuDS Measures Proposed

The proposed development is to contain the following measures of Sustainable Drainage Systems:

Limiting discharge. The design outflow from the overall development (c.3.47ha development catchment) is to be restricted to a maximum total outflow rate of **19.3 I/s** (5.5 I/s/ha), which is the equivalent greenfield runoff. Refer to *Section 3.2.3 and Section 3.3.4* for further details.

Attenuation Storage will be provided using underground proprietary storage units, as outlined in *Section 3.4.6*. this is to be provided at two strategic locations, in order to temporarily store excessive surface water, due to the restricted flow rates, during rainfall events up to, and including the design 1% AEP with a 20% additional allowance for climate change.

Pervious Paving is to be provided for all in-curtilage car parking (i.e. driveways), which will have a layer of drainage stone underneath. This will attenuate rainfall runoff from each property prior to entering the main surface water drainage network. This is to comprise permeable paviours, or alternative pervious finish.

The car parking area, located in the southern end of the site, is to comprise pervious paving finish, which will be allowed free drain naturally to the underlying soil. This is to be finished at a level similar, or lower, than existing, so as not to affect the floodplain.

<u>Water Quality</u> of the surface water, discharging from site, is to be improved with the following provisions:

- Pervious Paving in all private driveways, as described above;
- Intensive landscaping, where practical;
- Trapped gullies on all roads, to trap silt and gross pollutants;
- Silt traps to be provided on manholes immediately upstream of attenuation systems, as a further preventative measure to trap silt and other gross pollutants;
- Bypass fuel separator to be provided prior to discharging from site.

3.5 Taking in Charge

It is proposed that all new surface water infrastructure, **is** to be offered to be taken in charge by Galway County Council. Refer to the architect's design drawings for confirmation of extent of areas to be taken in charge.

3.6 Maintenance

Road gullies, flow control devices and attenuation systems, should be maintained, as appropriate and in accordance with manufacturer's recommendations and guidelines.

3.7 Surface Water Impact Assessment

The design criteria for the drainage system are established in GDSDS-RDP Volume 2, Section 6.3.4 and explained further in GDSDS-RDP Volume 2, Appendix E. There are four design criteria, each of which has been considered for the subject site:

- River Water Quality Protection;
- River Regime Protection;
- Level of Service (flooding) for the site and;
- River Flood Protection.

3.8 Criterion 1 – River Water Quality Protection

It is proposed that the overall drainage system, serving this development, will contain a range of surface water treatment methods, as outlined previously in *Section 3.4,* which will improve the quality of surface water being discharged from the proposed development.

Gross pollutants, sediments, hydrocarbons, and other impurities, will be removed at source with the following provisions:

- a) Permeable Paving to all in-curtilage car parking areas;
- b) Intensive landscaping, where practicable;
- c) Silt-traps prior to attenuation storage area.
- d) All road gullies are to be trapped;
- e) Fuel separator prior to discharge from the development.

3.9 Criterion 2 – River Regime Protection

Surface water discharge from the overall development will be restricted to the greenfield equivalent rural runoff rate of **19.3** I/s (5.5 l/s/ha), as per the Galway County Council Development Plan and the GDSDS. Refer to *Section 3.3.4* for further details.

This will be achieved with the provision of a flow restrictor (Hydro-Brake Optimum, by Hydro-International, or similar approved) upstream of the outfall manhole.

Refer also to **Appendix A** for results QBAR_{RURAL} calculation results, which have been carried out using the ICP SUDS Method on MicroDrainage software.

3.10 Criterion 3 – Level of Service (Flooding) Site

There are four sub-criteria for the required level of service, for a new development; as set out in the *GDSDS Volume 2, Section 6.3.4 (Table 6.3)*.

- No flooding on site except where planned (30-year high intensity rainfall event);
- No internal property flooding (100-year high intensity rainfall event);
- No internal property flooding (100-year river event and critical duration for site) and;
- No flood routing off site except where specifically planned. (100-year high intensity rainfall event).

3.10.1 Sub-Criterion 3.1

The surface water drainage systems, serving the proposed development, have been designed to accommodate the 100-year return period rainfall event (including an allowance of 20% increase in rainfall intensity for climate change) without flooding. Therefore, the system has capacity for the 30-year return period rainfall event without flooding.

The performance of the proposed drainage system has been analysed for design rainfall events up to, and including, the 1% AEP event (incl. 20% climate change allowance) using the *MicroDrainage Network Design*

Software, by Innovyze Inc. Refer to **Appendix B** for details of design criteria, calculations and results. The analyses indicate that no flooding will occur for design rainfall events up to, and including, the 1% AEP.

3.10.2 Sub-Criterion 3.2

The surface water drainage systems, serving the proposed development, have been designed to accommodate the 100-year return period rainfall event (including an allowance of 20% increase in rainfall intensity for climate change) without flooding.

The performance of the proposed drainage system in 100-year return period storm events (incl. 20% climate change allowance) has been analysed – Refer **Appendix B** for calculations. The analyses show that no flooding will occur in 100-year return period storm events.

3.10.3 Sub-Criterion 3.3

Details of the potential flood risk associated with the proposed development is outlined in a Site Specific Flood Risk Assessment, which is submitted under separate cover, as part of this application. The assessment indicates that there is no apparent risk of internal property flooding for a design 100year return period pluvial rainfall event (including 20% climate change allowance).

3.10.4 Sub-Criterion 3.4

The surface water drainage systems, serving the proposed development, have been designed to accommodate the 100-year return period rainfall event (including an allowance of 20% increase in rainfall intensity for climate change) without flooding, so no flood routing off site will be experienced for such a rainfall event.

The performance of the proposed drainage system in 100-year return period storm events (incl. 20% climate change allowance) has been analysed – Refer **Appendix B** for calculations. The analyses show that no flooding will occur in 100-year return period storm events.

Details of the flood risk assessment associated with the proposed development is reviewed in the Site Specific Flood Risk Assessment, which is submitted under separate cover, as part of this application. This assessment, along with the network design simulation results, from the MicroDrainage Network Analysis, indicates that no internal property flooding will occur in a 100-year return period fluvial flood event (including 20% climate change allowance).

3.11 Criterion 4 – River Flood Protection

As outlined in *Section 3.10* (Criterion 2), the surface water runoff from the development's catchment will be limited to **19.3 l/s** (5.5 l/s/ha).

Refer to Section 3.4.3 and Section 3.7 for further details on the limiting discharge rates. The GDSDS Volume 2, Appendix E states that this practice ensures "that sufficient stormwater runoff retention is achieved to protect the river during extreme events".

Attenuation storage is to be provided for the 100-year return period rainfall event (including an increased 20% rainfall intensity; to allow for climate change). Discharge from site is to be achieved through the use of a vortex flow control device (e.g. Hydro-Brake Optimum, by Hydro-International, or similar approved), which will reduce the risk of blockage present with other flow devices.

Refer to **Appendix B** for details of hydraulic modelling calculations of attenuation and flow control facilities, as carried out using MicroDrainage software by Innovyze Inc.

4 WASTEWATER DRAINAGE

4.1 Overview

All proposed wastewater sewer design has been carried out in accordance with Irish Water's Code of Practice for Wastewater Infrastructure. The existing site is currently a green field, with no existing wastewater discharge to the public wastewater infrastructure.

A Pre-Connection Enquiry Form (*IW Ref Nr. CDS19008110*) was submitted to Irish Water for a total of 120nr. domestic units, with confirmation of feasibility confirmed by return of letter. Refer to **Appendix D** for a copy of the Confirmation of Feasibility letter, as issued on 21st November 2019.

Following further detailed design and correspondence with Irish Water, a Statement of Design Acceptance for the proposed development's wastewater network was issued by Irish Water on 10th July 2020, approving the proposed development's wastewater network. Refer to **Appendix D** for a copy of the Statement of Design Acceptance letter.

4.2 Existing Wastewater Drainage

The Cnoc Fraoigh residential development is currently served by a gravity network that discharges to a wastewater treatment plant and percolation area, located to the south of the proposed development.

4.3 **Proposed Wastewater Drainage Network**

It is proposed to separate the wastewater and surface water drainage networks, which will serve the proposed development, and provide independent connections to the local public foul sewer and existing open ditch watercourse respectively. Please refer to *Section 3* for details of the proposed surface water drainage design strategy.

The wastewater drainage from each dwelling is to connect to a gravity pipe network that will extend through Cnoc Fraoigh, to the public wastewater infrastructure located at L1321.

Following the connection of the development's wastewater drainage network to the public infrastructure on the L1321, as described, it is proposed to decommission the existing public wastewater treatment plant that is currently serving Cnoc Fraoigh residential development, by directing the existing wastewater network to a new wastewater pumping system.

This proposed wastewater pumping system will be a Type 3 system (greater than 20nr. houses), which will be designed and installed in accordance with Irish Water's Code of Practice for Wastewater Infrastructure, and is to serve the existing 21nr. residential units along with the proposed single residential unit nr. 121.

The pumping system is to be sited at a distance greater than 15m from any residential property, as noted on the design drawings, and in accordance with Irish Water's requirements. It is noted that the proposed location is within the indicative extent of the Trusky East Stream's Flood Extent, as per Variation 2(a) of the Galway County Development Plan, however, a more detailed flood study of the Trusky East Stream's catchment and predicted flood extent indicates that this location is outside of the predicted flood extent. Therefore, the proposed location of the wastewater pumping system is not considered susceptible to flooding, and has no also impact on the floodplain.

The above design proposal is to ensure that all residential units in the local area (proposed and existing) are to be served by public infrastructure and allow for the decommissioning of the existing wastewater treatment plant.

All proposed wastewater infrastructure is to be carried out in accordance with the Building Regulations Part H and Irish Water's Code of Practice for Wastewater Infrastructure.

4.4 Taking In Charge

All new wastewater drainage infrastructure installed to serve the proposed development **is** to be offered to Irish Water for to be taken-in-charge.

4.5 Calculations

As outline earlier, it is proposed to discharge the wastewater flows, from the proposed development, to the existing wastewater sewer at Cnoc Fraoigh, adjacent to the proposed development, with a short section of the existing to be realigned at a lower level to accommodate the connection.

The **total peak design flow** from this proposed development has been calculated as **3.7 l/s**. Refer to **Appendix C** for wastewater loading calculations and network design tables.

Please refer to **Appendix C** for details of foul drainage flow rate calculations, which have been carried out in accordance with Irish Water's Code of Practice for Wastewater Infrastructure, IW-CDS-5030-03.

5 POTABLE WATER SUPPLY

All proposed potable water design has been carried out in accordance with Irish Water's Code of Practice for Water Infrastructure, IW-CDS-5020-03.

A Pre-Connection Enquiry Form (*IW Ref Nr. CDS19008110*) was submitted to Irish Water for a total of 120nr. domestic units, with confirmation of feasibility confirmed by return of letter. Refer to **Appendix D** for a copy of the Confirmation of Feasibility letter, as issued on 21st November 2019.

Following further detailed design and correspondence with Irish Water, a Statement of Design Acceptance for the proposed development's water main network was issued by Irish Water on 10th July 2020, approving the proposed development's water main network. Refer to **Appendix D** for a copy of the Statement of Design Acceptance letter.

5.1 Connection to the Existing Network

It is proposed to provide a 150mm high density polyethylene connection to the existing water main at Cnoc Fraoigh, in order to serve the development.

Unit Nr. 121 (only), which is isolated from the main development, is to connect independently, via a 25mm service connection, to the existing water main network at Cnoc Fraoigh.

The proposed connection is to be carried out in accordance with Irish Water's Code of Practice for Water Infrastructure, following agreement with Irish Water, with a bulk water meter to be provided at the development's entrance.

5.2 Water Saving Devices

Water saving devices are to be considered for use within the proposed development units, in order to conserve water, as part of the internal fit-out.

5.3 Water Meters

A bulk water meter is to be provided at the connection to the public water main, at the development entrance, with individual boundary box meters provided at the connection to each individual property.

6 ROAD DESIGN

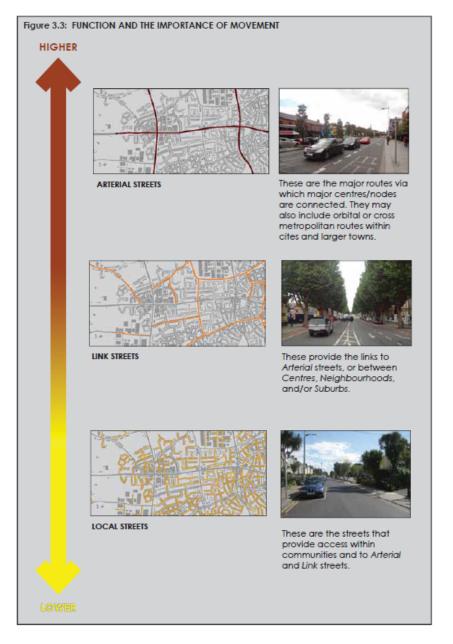
6.1 Road Design Standards

The roads elements of this project are designed to comply with the following standards. It is noted that the Design Manual for Urban Roads and Streets (DMURS) is the principle design guideline for this scheme. The list of the main standard documents relied upon, using the most up to date available version, is as follows:

- DMURS;
- National Cycle Manual;
- Traffic Signs Manual 2010 with Amendments (July 2013);
- DN-PAV-03021: Pavement & Foundation Design;
- GE-STY-01024: Road Safety Audit;
- NRA Design Manual for Roads and Bridges (NRA DMRB);

6.2 Road Classification

The movement function of a street is described on DMURS using a hierarchy system that classifies streets into the following categories, as shown in DMURS (*refer excerpt in Figure 6.1*):


- Arterial Streets;
- Link Streets;
- Local Streets.

Refer also to **Appendix E** for a technical note on proposed road works associated with the new footpath to be constructed alongside the L1321, towards Bearna Village.

Based on the above, the internal roads will be classified as **Local Streets** as they provide access to the dwellings within the proposed development and to Cnoc Fraoigh.

Table 3.1 of DMURS illustrates how this road hierarchy relates to other relevant documents.

Arterial			
	National	Primary Distributor Roads	Distributor
ink	Regional (see note 1)	District Distributor Local Collector (see Notes 1 and 2)	Local Collector
local	Local	Access	Access

Table 3.1: Terminology used within this Manual compared with other key publications.

6.3 Road Design Speeds

The design speed is the maximum speed at which it is envisaged/intended that the majority of vehicles will travel under normal conditions.

The Design Speed for the internal network will be 10-30kph in compliance with Table 4.1 of DMURS that illustrates the broader application of design speeds according to Context and Function.

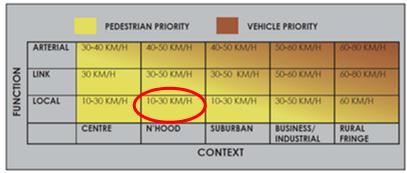


Table 4.1: Design speed selection matrix indicating the links between place, movement and speed that need to be taken into account in order to achieve effective and balanced design solutions.

It should be noted that 30 Kph speed limit signs have been included at each entrance to warn drivers accessing the development about new speed zone.

Figure 6.3.1 – Design Speed Selection Matrix (DMURS)

6.4 Horizontal and Vertical Geometry

The road alignments will be designed so that the geometric elements, including horizontal and vertical curvature, super elevation and sight distance will be in line with DMURS, having values consistent with the design speeds.

The relevant horizontal and vertical geometric design values are highlighted in DMURS *Table 4.3* below. A standard carriageway cross fall of 2.5% will be adopted throughout with super elevation applied if necessary, noting that adverse camber is allowable under DMURS designs in accordance with *Table 4.3*, copied below.

	ŀ		CURVATUR	E		
Design Speed (km/h)	10	20	30	40	50	60
Minimum Radius with adverse camber of 2.5%	-	11	26	56	104	178
Minimum Radius with superelevation of 2.5 %	-	-	-	46	82	136
		VERTICAL	CURVATURE			
Design Speed (km/h)	10	20	30	40	50	60
Crest Curve K Value	N/A	N/A	N/A	2.6	4.7	8.2
Sag Curve K Value	N/A	N/A	2.3	4.1	6.4	9.2

Table 4.3: Carriageway geometry parameters for horizontal and vertical curvature.

6.5 Cross Section

The carriageway widths have been selected in accordance with *Section 4.4.1* and *Figure 4.55* of DMURS (refer excerpt overleaf). The carriageway width varies from 5.5m for the main access to 4.8m for the remaining local roads.

Refer to **Appendix E** for a technical note on proposed road width associated with the new footpath to be constructed alongside the L1321, towards Bearna Village.

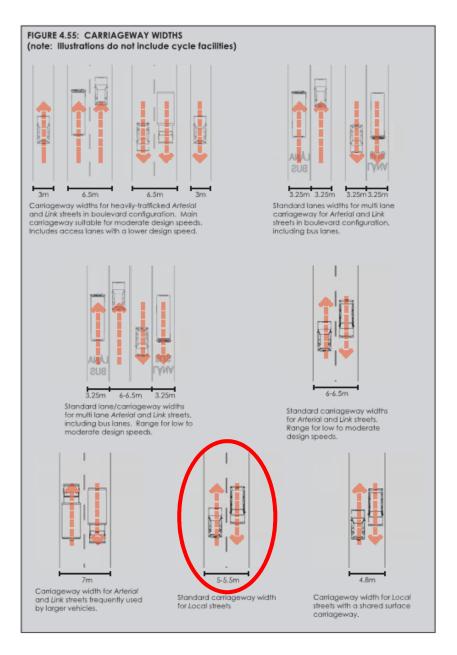


Figure 6.5.1 – Carriageway Width Selection Table (DMURS)

The width of the footpaths is determined by reference to DMURS *Section 4.3.1* with a minimum required width of 1.8m based on the space needed for two wheelchairs to pass each other. However, in most cases a footpath width of 2m has been provided throughout the development. Refer to design drawing B861-OCSC-XX-XX-C-DR-0702 for typical section detail.

Project: B861 Issued: 13.07.2020

6.6 Proposed Development Access

The development is to be accessed via the existing Cnoc Fraoigh residential development as a continuation of an existing temporary Cul de Sac. Therefore, sightlines are not an issue.

6.7 Road Safety Audit

A Road Safety Audit Stage 1 (or 1/2) has been carried out and the Road Safety Audit report is attached in **Appendix F** of this report. The Engineer's response to the Audit is also attached in the same appendix, this has been signed off and agreed with the RSA Audit team. Items 1, 2, and 4 of the RSA have been addressed in the drawings. It is confirmed that item 3 of the RSA will be incorporated in the compliance and "For Construction" drawings

APPENDIX A. QBAR RUNOFF CALCULATIONS

Appendix A

QBAR Runoff Calculations

O'Connor Sutton Cronin		Page 1
9 Prussia Street	PROJECT No. B861	
Dublin 7		
Ireland	RESIDENTIAL DEVELOPMENT BEARNA	Micro
Date 23/06/2020 16:51	Designed by alexandre.baraona	Micro Drainage
File B861_QBARRURAL_20200623.SRCX	Checked by	Drainage
XP Solutions	Source Control 2019.1	
	ICP SUDS Mean Annual Flood	
	Input	
Return Per	iod (years) 5 SAAR (mm) 1230 Urban 0.00 Area (ha) 3.470 Soil 0.370 Region Number Ireland Wes	
	Results 1/s	
	QBAR Rural 19.3	
	QBAR Urban 19.3	
	Q5 years 22.7	
	Ql year 16.4	
	Q30 years 29.8 Q100 years 34.3	
	QIVU YOULD DI.D	

APPENDIX B. SURFACE WATER DESIGN & ATTENUATION CALCULATIONS

- Design Criteria;
- Area Summary;
- Network Design & Results Table;
- Simulation Criteria;
- Hydrobrake / Controls & Storage Design;
- Summary of Results.

Appendix B

Surface Water Design and Attenuation Calculations

O'Connor Sutton Cronin				Page 1
9 Prussia Street	PROJECT N	o. B861		
Dublin 7				
Ireland	RESIDENTI	AL DEVELC	DPMENT BEARNA	Micro
Date 15/05/2020	Designed	by RP		
File B861_MD Design Drainage_20200515.MDX	Checked b	у МК		Drainage
XP Solutions	Network 2	018.1		
STORM SEWER	DESIGN by the	e Modifie	d Rational Method	
Des	<u>sign Criteria</u>	for Surfa	ace Water	
Pipe	Sizes STANDARD	Manhole Siz	zes STANDARD	
Return Period (years) 5 M5-60 (mm) 15.000 Ratio R 0.246 Maximum Rainfall (mm/hr) 50 A		age (l/s/ha unoff Coef: PIMP (² e Change (²	a) 0.000 Maximum Backdrop Height f. 0.750 Min Design Depth for Optimisation %) 100 Min Vel for Auto Design only (m %) 20 Min Slope for Optimisation (1	(m) 1.200 /s) 1.00
	Designed with	Level Sof	fits	
<u>Time Area Diagram for Su</u>	<u>irface Water a</u>	<u>t outfall</u>	SW-OUTFALL A (pipe SW-1.004)	
	Time Area (mins) (ha) 0-4 0.372	(mins) (H	na)	
T	otal Area Contri	outing (ha)	= 0.760	
	Total Pipe Volu	me (m³) = :	20.493	
Time Area Diagn	ram at outfall	SW-OUTFA	ALL B (pipe SW-6.012)	
	me Area Time .ns) (ha) (mins		ime Area ins) (ha)	
	0-4 0.037 4-	3 0.724	3-12 0.268	
T	otal Area Contri	outing (ha)	= 1.029	
	Total Pipe Volu	me (m³) =	47.022	
	©1982-201	8 Innovyz	ze	

O'Connor Sutton Cronin		Page 2
9 Prussia Street	PROJECT No. B861	
Dublin 7		
Ireland	RESIDENTIAL DEVELOPMENT BEARNA	Micro
Date 15/05/2020	Designed by RP	
File B861_MD Design Drainage_20200515.MDX	Checked by MK	Drainage
XP Solutions	Network 2018.1	
PN Length Fall Slope I.Ar	Design Table for Surface Water rea T.E. Base k HYD DIA Section Type Auto	

		(111)	(111)	(1.1)	(ma)	(1113)	1104	(1)3)	(11111)	DLCI	(Desigi
2	SW-1.000	31.772	0.187	170.0	0.081	4.00		0.0	0.600	0	225	Pipe/Conduit	ð
2	SW-2.000	25.769	0.385	67.0	0.085	4.00		0.0	0.600	0	225	Pipe/Conduit	0
	SW-1.001	8.568	0.306	28.0	0.082	0.00		0.0	0.600	0	225	Pipe/Conduit	ð
5	SW-1.002	16.637	0.098	170.0	0.033	0.00		0.0	0.600	0	300	Pipe/Conduit	
2	SW-1.003	33.002	0.066	500.0	0.000	0.00		0.0	0.600	0	300	Pipe/Conduit	ð
	sw-3.000	40.834	0.167	245.0	0.133	4.00		0.0	0.600	0	300	Pipe/Conduit	ð
0	SW-3.001	15.686	0.064	245.0	0.047	0.00		0.0	0.600	0	300	Pipe/Conduit	Ū
ŝ	SW-4.000	83.356	0.340	245.0	0.197	4.00		0.0	0.600	0	300	Pipe/Conduit	ð
ŝ	SW-3.002	19.091	0.078	245.0	0.030	0.00		0.0	0.600	0	300	Pipe/Conduit	ď

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)	Foul (1/s)	Add Flow (l/s)	Vel (m/s)	Cap (1/s)	Flow (l/s)	
SW-1.000	50.00	4.53	21.446	0.081	0.0	0.0	2.2	1.00	39.8	13.1	
SW-2.000	50.00	4.27	21.309	0.085	0.0	0.0	2.3	1.60	63.6	13.8	
SW-1.001	50.00	4.59	20.924	0.247	0.0	0.0	6.7	2.48	98.7	40.1	
SW-1.002	50.00	4.82	20.377	0.280	0.0	0.0	7.6	1.20	85.0	45.4	
SW-1.003	50.00	5.61	18.296	0.280	0.0	0.0	7.6	0.70	49.2	45.4	
SW-3.000	50.00	4.68	19.072	0.133	0.0	0.0	3.6	1.00	70.7	21.6	
SW-3.001	50.00	4.94	18.905	0.180	0.0	0.0	4.9	1.00	70.7	29.2	
SW-4.000	50.00	5.39	19.320	0.197	0.0	0.0	5.3	1.00	70.7	32.0	
SW-3.002	50.00	5.71	18.841	0.407	0.0	0.0	11.0	1.00	70.7	66.1	

©1982-2018 Innovyze

O'Connor Sutton Cronin														Page 3
9 Prussia Street					Pl	ROJECT	No. B861							
Dublin 7					-									
Ireland						-	FIAL DEVEI	OPMEN	IT BEA	RNA				– Micro
Date 15/05/2020					De	esigned	d by RP							Drainage
File B861_MD Design Dra	inage_20200515	5.MDX				hecked	-							
XP Solutions					Ne	etwork	2018.1							
				Netwo	ork Des	sian Ta	ble for S	urface	e Wate	≏r				
				<u>110 CW(</u>	DIN DCC	<u>, i gii i u</u>	<u>DIC 101 D</u>	arrac	e mae	<u></u>				
	PN	-		-	I.Area		Base	k			Secti	on Type	e Auto	
		(m)	(m)	(1:X)	(ha)	(mins)	Flow (l/s)	(mm)	SECT	(mm)			Design	
	SW-5.000	20.310	0.472	2 43.0	0.074	4.00	0.0	0.600	0	225	Pipe/	Condui	t 🔒	
	SW-3.003	3.798	0.012	2 305.0	0.000	0.00	0.0	0.600	0	375	Pipe/	Condui	t 💣	
	SW-1.004	47.579	0.280	0 170.0	0.000	0.00	0.0	0.600	0	225	Pipe/	Condui	t 💣	
	SW-6.000	12.212	0.113	3 108.0	0.056	4.00	0.0	0.600	0	225	Pipe/	Condui	t 🔒	
	SW-6.001							0.600				Condui		
	SW-7.000	14.637	0.505	5 29.0	0.091	4.00	0.0	0.600	0	225	Pipe/	Condui	t 👌	
	SW-6.002	35.102	0.143	3 245.0	0.138	0.00	0.0	0.600	0	300	Pipe/	Condui	t 💣	
	SW-6.003	9.670	0.039	9 245.0	0.000	0.00	0.0	0.600	0	300	Pipe/	Condui		
					Ne	twork H	Results Ta	<u>ble</u>						
	PN	Ra	in	T.C.	US/IL Σ] I.Area	Σ Base	Foul	Add F	'low	Vel	Сар	Flow	
				mins)		(ha)						-		
	SW-5.00	00 50	.00	4.17	20.040	0.074	0.0	0.0		2.0	2.00	79.5	12.0	
	SW-3.00	03 50	.00	5.77	18.688	0.480	0.0	0.0	1	3.0	1.03	114.0	78.1	
	SW-1.00)4 50	.00	4.79	18.230	0.000	4.2	0.0		0.7	1.00	39.8	4.2	
					15.724							50.0		
	SW-6.00	01 50	.00	4.30	15.611	0.056	0.0	0.0		1.5	1.00	39.8	9.1	
	SW-7.00	00 50	.00	4.10	16.157	0.091	0.0	0.0		2.5	2.44	97.0	14.8	
	SW-6.00	02 50	.00	4.88	15.488	0.285	0.0	0.0		7.7	1.00	70.7	46.3	
	SW-6.00	03 50		5.04		0.285	0.0	0.0		7.7	1.00	70.7	46.3	

O'Connor Sutton Cronin													Page 4
9 Prussia Street				PR	OJECT	No. B8	861						
Dublin 7													
Ireland				RE	SIDENI	IAL DI	EVEL	OPMEN	T BEA	RNA			– Micro
Date 15/05/2020				De	signed	l by RI	P						Drainage
File B861_MD Design Drainage_2020051	5.MDX			Ch	ecked	by MK							Diamage
XP Solutions				Ne	twork	2018.3	1						
			Netwo	ck Des	ign Tal	ble fo	or Su	irface	e Wat	er			
PN	Length	Fall	Slope	I.Area	T.E.	Bas	e	k	HYD	DIA	Section Type	Auto	
	(m)	(m)	(1:X)	(ha)	(mins)	Flow (1/s)	(mm)	SECT	(mm)		Design	
SW-8.000	60.738	2.641	23.0	0.280	4.00		0.0	0.600	0	225	Pipe/Conduit	ð	
SW-6.004	46.095	0.151	305.0	0.131	0.00		0.0	0.600	0	375	Pipe/Conduit	æ	
SW-6.005	7.116	0.023	305.0	0.000	0.00		0.0	0.600			Pipe/Conduit		
SW-6.006	19.473	0.097	200.0	0.063	0.00		0.0	0.600	0	375	Pipe/Conduit	0	
SW-9.000	10.992	0.045	245.0	0.053	4.00		0.0	0.600	0	300	Pipe/Conduit	0	
SW-9.001	46.894	0.191	245.0	0.068	0.00		0.0	0.600			Pipe/Conduit		
SW-6.007	20.345	0.050	405.0	0.000	0.00		0.0	0.600	0	450	Pipe/Conduit	ď	
SW-10.000	4.531	0.027	170.0	0.063	4.00		0.0	0.600	0	225	Pipe/Conduit	0	
							а П ¹	-] -					
				Net	work F	<u>lesuits</u>	s rai	оте					
PN	Ra	in 7	r.c. t	JS/IL Σ	I.Area	ΣBa	se	Foul	Add	71.0W	Vel Cap	Flow	

SW-8.000	50.00	4.37 17.830	0.280	0.0	0.0	7.6	2.74 108.	9 45.4
SW-6.004 SW-6.005 SW-6.006	50.00 49.94 49.15	5.79 15.039 5.90 14.888 6.16 14.664	0.695 0.695 0.759	0.0 0.0 0.0	0.0 0.0 0.0	18.8 18.8 20.2	1.03 114. 1.03 114. 1.28 141.	0 113.0
SW-9.000 SW-9.001	50.00 50.00	4.18 14.798 4.96 14.753	0.053 0.121	0.0	0.0	1.4 3.3	1.00 70. 1.00 70.	
SW-6.007	48.15	6.50 14.412	0.880	0.0	0.0	22.9	1.00 159.	7 137.6
SW-10.000	50.00	4.08 16.899	0.063	0.0	0.0	1.7	1.00 39.	8 10.2

©1982-2018 Innovyze

O'Connor Sutton Cronin		Page 5
9 Prussia Street	PROJECT No. B861	
Dublin 7		
Ireland	RESIDENTIAL DEVELOPMENT BEARNA	Micro
Date 15/05/2020	Designed by RP	
File B861_MD Design Drainage_20200515.MDX	Checked by MK	Drainage
XP Solutions	Network 2018.1	
	rk Design Table for Surface Water I.Area T.E. Base k HYD DIA Section Type Auto	

	(m)	(m)	(1:X)	(ha)	(mins)	Flow	(l/s)	(mm)	SECT	(mm)		Design
SW-6.008	59.235	0.118	500.0	0.000	0.00		0.0	0.600	0	450	Pipe/Conduit	ď
SW-11.000	14.506	0.059	245.0	0.087	4.00		0.0	0.600	0	300	Pipe/Conduit	ð
SW-6.009	25.897	0.106	245.0	0.000	0.00		0.0	0.600	0	300	Pipe/Conduit	ď
SW-6.010	31.628	0.129	245.0	0.000	0.00		0.0	0.600	0	300	Pipe/Conduit	
SW-6.011	37.322	0.152	245.0	0.000	0.00		0.0	0.600	0	300	Pipe/Conduit	
SW-12.000	12.146	0.050	245.0	0.000	4.00		0.0	0.600	0	300	Pipe/Conduit	0
SW-12.001	44.000	0.180	245.0	0.000	0.00		0.0	0.600	0	300	Pipe/Conduit	
SW-6.012	48.013	0.196	245.0	0.000	0.00		0.0	0.600	0	300	Pipe/Conduit	đ

<u>Network Results Table</u>

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)	Foul (l/s)	Add Flow (l/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)
SW-6.008	45.23	7.59	14.361	0.942	0.0	0.0	23.1	0.90	143.5	138.5
SW-11.000	50.00	4.24	14.400	0.087	0.0	0.0	2.3	1.00	70.7	14.1
SW-6.009	50.00	4.43	14.243	0.000	15.0	0.0	2.5	1.00	70.7	15.0
SW-6.010	50.00	4.96	14.137	0.000	15.0	0.0	3.0	1.00	70.7	18.0
SW-6.011	50.00	5.58	14.008	0.000	15.0	0.0	3.0	1.00	70.7	18.0
SW-12.000	50.00	4.20	14.085	0.000	0.0	0.0	0.0	1.00	70.7	0.0
SW-12.001	50.00	4.94	14.035	0.000	0.0	0.0	0.0	1.00	70.7	0.0
SW-6.012	48.48	6.38	13.856	0.000	15.0	0.0	3.0	1.00	70.7	18.0

O'Connor Sutton Cronin		Page 6
9 Prussia Street	PROJECT No. B861	
Dublin 7		
Ireland	RESIDENTIAL DEVELOPMENT BEARNA	Micro
Date 15/05/2020	Designed by RP	
File B861_MD Design Drainage_20200515.MDX	Checked by MK	Drainage
XP Solutions	Network 2018.1	

Area Summary for Surface Water

Pipe Number	PIMP Type	PIMP Name	PIMP (%)	Gross Area (ha)	Imp.	Pipe Total (ha)
Number	туре	Name	(*)	Alea (IIa)	Alea (IIa)	(114)
1.000	Classification	Hardstanding	100	0.081	0.081	0.081
2.000	Classification	Hardstanding	100	0.085	0.085	0.085
1.001	Classification	Hardstanding	100	0.082	0.082	0.082
1.002	Classification	Hardstanding	100	0.033	0.033	0.033
1.003	-	-	100	0.000	0.000	0.000
3.000	Classification	Hardstanding	100	0.033	0.033	0.033
	Classification	Hardstanding	100	0.099	0.099	0.133
3.001	Classification	Hardstanding	100	0.047	0.047	0.047
4.000	Classification	Hardstanding	100	0.072	0.072	0.072
	Classification	Hardstanding	100	0.090	0.090	0.162
	Classification	Hardstanding	100	0.035	0.035	0.197
3.002	Classification	Hardstanding	100	0.030	0.030	0.030
5.000	Classification	Hardstanding	100	0.074	0.074	0.074
3.003	-	-	100	0.000	0.000	0.000
1.004	-	-	100	0.000	0.000	0.000
6.000	Classification	Hardstanding	100	0.056	0.056	0.056
6.001	-	-	100	0.000	0.000	0.000
7.000	Classification	Hardstanding	100	0.091	0.091	0.091
6.002	Classification	Hardstanding	100	0.138	0.138	0.138
6.003	-	-	100	0.000	0.000	0.000
8.000	Classification	Hardstanding	100	0.280	0.280	0.280
6.004	Classification	Hardstanding	100	0.131	0.131	0.131
6.005	-	-	100	0.000	0.000	0.000
6.006	Classification	Hardstanding	100	0.063	0.063	0.063
9.000	Classification	Hardstanding	100	0.018	0.018	0.018
	Classification	Hardstanding	100	0.035	0.035	0.053
9.001	Classification	Hardstanding	100	0.068	0.068	0.068
6.007	-	-	100	0.000	0.000	0.000
10.000	Classification	Hardstanding	100	0.063	0.063	0.063
6.008	-	-	100	0.000	0.000	0.000
11.000	Classification	Hardstanding	100	0.069	0.069	0.069
	Classification	Hardstanding	100	0.018	0.018	0.087
6.009	-	-	100	0.000	0.000	0.000
6.010	-	-	100	0.000	0.000	0.000
6.011	-	-	100	0.000	0.000	0.000
		@1002_201	0 T D			

©1982-2018 Innovyze

O'Connor Sutton Cronin		Page 7
9 Prussia Street	PROJECT No. B861	
Dublin 7		
Ireland	RESIDENTIAL DEVELOPMENT BEARNA	Micro
Date 15/05/2020	Designed by RP	Drainage
File B861_MD Design Drainage_20200515.MDX	Checked by MK	Dialitacje
XP Solutions	Network 2018.1	

Area Summary for Surface Water

Pipe	PIMP	PIMP		PIMP	Gross	Imp.	Pipe Total
Number	Туре	Name		(%)	Area (ha)	Area (ha)	(ha)
12.000		_	_	100	0.000	0.000	0.000
12.001		-	_	100	0.000	0.000	0.000
6.012		-	-	100	0.000	0.000	0.000
					Total	Total	Total
					1.789	1.789	1.789

Free Flowing Outfall Details for Surface Water

Outfall	Outfall	c.	Level	I.	Level		Min	D,L	W	
Pipe Number	Name		(m)		(m)	I.	Level	(mm)	(mm)	
							(m)			
SW-1.004	SW-OUTFALL	A	18.890		17.950		17.950	0	0	

Free Flowing Outfall Details for Surface Water

Outfall	Outfall	C. Level :	I. Level	Min	D,L	W
Pipe Number	Name	(m)	(m)	I. Level	(mm)	(mm)
				(m)		

SW-6.012 SW-OUTFALL B 15.380 13.660 13.660 0 0

											Page 8
9 Prussia Street				E	PROJECT No.	B861					
Dublin 7											
Ireland				F	RESIDENTIAL	DEVELOPME	INT BEARN	JA			– Micro
Date 15/05/2020				Ι	Designed by	RP					
File B861 MD Design Drainage	e 2020	0515.MDX			Checked by N	IK					Drainage
XP Solutions				N	Network 2018	3.1					
				<u>Online</u> (Controls for	Surface	Water				
	<u>Hy</u>	<u>'dro-Brake@</u>	<u>® Optim</u>	um Manho	le: SW-12,	DS/PN: SW·	-1.004,	Volume (m³): 6.6		
		Unit Referen	nce MD-SI	HE-0087-42	00-1700-4200		Si	ump Availabl	e Yes		
		esign Head			1.700			Diameter (mm			
	Des	ign Flow (l/			4.2			ert Level (m			
		Flush-Fl					-	Diameter (mm			
		Objecti Applicati		imise upst	ream storage Surface	Suggested	Manhole	Diameter (mm) 1200		
		Appiicaci	-011		Surface						
	с	Control Point	ts	Head (m)	Flow (l/s)	Control	Points	Head (m)	Flow (1/s	5)	
	Design	Point (Calc		1.700	4.2		Kick-F				
		Flu	ısh-Flo™	0.381	3.6 Me	an Flow ove	er Head Rai	nge -	3.	. 4	
The hydrological calculations 1	have ber	en based on	the Heac	l/Discharge	e relationshi	o for the Hy	ydro-Brake	® Optimum as	specified	d. Should	another type of contr
device other than a Hydro-Brake											
i de la constante d	1/->										
Depth (m) Flow (1	L/S) Der	oth (m) Flow	r (l/s) I)epth (m)	Flow (l/s) De	pth (m) Flo	w (1/s) D	epth (m) Flo	ow (1/s) D	epth (m) F	'low (l/s)
	2.6	pth (m) Flow 0.600	7 (1/s) D 3.5	Depth (m) 1.600	Flow (1/s) De	pth (m) Flc 2.600	w (l/s) D	epth (m) Flo	5w (l/s)	epth (m) F	2 low (l/s) 8.4
0.100											
0.100 0.200	2.6	0.600	3.5	1.600	4.1	2.600	5.1	5.000	6.9	7.500	8.4
0.100 0.200 0.300	2.6 3.4	0.600 0.800	3.5 3.0	1.600 1.800	4.1 4.3	2.600 3.000	5.1 5.5	5.000 5.500	6.9 7.3	7.500 8.000	8.4 8.7
0.100 0.200 0.300 0.400	2.6 3.4 3.6	0.600 0.800 1.000	3.5 3.0 3.3	1.600 1.800 2.000	4.1 4.3 4.5	2.600 3.000 3.500	5.1 5.5 5.9	5.000 5.500 6.000	6.9 7.3 7.6	7.500 8.000 8.500	8.4 8.7 8.9
0.100 0.200 0.300 0.400	2.6 3.4 3.6 3.6 3.6	0.600 0.800 1.000 1.200 1.400	3.5 3.0 3.3 3.6 3.8	1.600 1.800 2.000 2.200 2.400	4.1 4.3 4.5 4.7	2.600 3.000 3.500 4.000 4.500	5.1 5.5 5.9 6.3 6.6	5.000 5.500 6.000 6.500 7.000	6.9 7.3 7.6 7.9 8.1	7.500 8.000 8.500 9.000	8.4 8.7 8.9 9.2
0.100 0.200 0.300 0.400	2.6 3.4 3.6 3.6 3.6	0.600 0.800 1.000 1.200 1.400 dro-Brake®	3.5 3.0 3.3 3.6 3.8	1.600 1.800 2.000 2.200 2.400 mm Manhol	4.1 4.3 4.5 4.7 4.9	2.600 3.000 3.500 4.000 4.500	5.1 5.5 5.9 6.3 6.6	5.000 5.500 6.000 6.500 7.000 Zolume (m³)	6.9 7.3 7.6 7.9 8.1	7.500 8.000 8.500 9.000	8.4 8.7 8.9 9.2
0.100 0.200 0.300 0.400	2.6 3.4 3.6 3.6 3.6	0.600 0.800 1.000 1.200 1.400 dro-Brake® Unit Referen	3.5 3.0 3.3 3.6 3.8) Optimu	1.600 1.800 2.000 2.200 2.400 mm Manhol	4.1 4.3 4.5 4.7 4.9	2.600 3.000 3.500 4.000 4.500	5.1 5.5 5.9 6.3 6.6	5.000 5.500 6.000 6.500 7.000 Volume (m³) ump Availabl	6.9 7.3 7.6 7.9 8.1 •: 12.3 e Yes	7.500 8.000 8.500 9.000	8.4 8.7 8.9 9.2
0.100 0.200 0.300 0.400	2.6 3.4 3.6 3.6 Hyd	0.600 0.800 1.000 1.200 1.400 <u>dro-Brake®</u> Unit Referen Design Head	3.5 3.0 3.3 3.6 3.8 0 Optimu nce MD-SF (m)	1.600 1.800 2.000 2.200 2.400 mm Manhol	4.1 4.3 4.5 4.7 4.9	2.600 3.000 3.500 4.000 4.500	5.1 5.5 5.9 6.3 6.6	5.000 5.500 6.000 6.500 7.000 Volume (m ³) ump Availabl Diameter (mm	6.9 7.3 7.6 7.9 8.1 •: 12.3 •: 12.3 • Yes) 171	7.500 8.000 8.500 9.000	8.4 8.7 8.9 9.2
0.100 0.200 0.300 0.400	2.6 3.4 3.6 3.6 Hyd	0.600 0.800 1.000 1.200 1.400 dro-Brake® Unit Referen Design Head Sign Flow (1/	3.5 3.0 3.3 3.6 3.8 0 Optimu nce MD-SH (m) /s)	1.600 1.800 2.000 2.200 2.400 mm Manhol	4.1 4.3 4.5 4.7 4.9	2.600 3.000 3.500 4.000 4.500	5.1 5.5 5.9 6.3 6.6 •6.009, V	5.000 5.500 6.000 6.500 7.000 7.000 7.000 7.000 Molume (m ³) Diameter (mm ert Level (m	6.9 7.3 7.6 7.9 8.1 •: 12.3 •: 12.3 • Yes) 171) 14.243	7.500 8.000 8.500 9.000	8.4 8.7 8.9 9.2
0.100 0.200 0.300 0.400	2.6 3.4 3.6 3.6 Hyd	0.600 0.800 1.000 1.200 1.400 dro-Brake® Unit Referen Design Head Sign Flow (1/ Flush-Fl	3.5 3.0 3.3 3.6 3.8 0 Optimu nce MD-SH (m) /s) 10™	1.600 1.800 2.000 2.200 2.400 m Manhol	4.1 4.3 4.5 4.7 4.9 Le: SW-28, I 00-1300-1500 1.300 15.0 Calculated	2.600 3.000 3.500 4.000 4.500 DS/PN: SW-	5.1 5.5 5.9 6.3 6.6 •6.009, V St Inve let Pipe 1	5.000 5.500 6.000 6.500 7.000 Volume (m ³) ump Availabl Diameter (mm ert Level (m Diameter (mm	6.9 7.3 7.6 7.9 8.1 : 12.3 e Yes) 171) 14.243) 225	7.500 8.000 8.500 9.000	8.4 8.7 8.9 9.2
0.100 0.200 0.300 0.400	2.6 3.4 3.6 3.6 Hyd	0.600 0.800 1.000 1.200 1.400 dro-Brake® Unit Referen Design Head Sign Flow (1/ Flush-Fl	3.5 3.0 3.3 3.6 3.8 0 Optimu nce MD-SF (m) /s) 10™ ive Mini	1.600 1.800 2.000 2.200 2.400 m Manhol	4.1 4.3 4.5 4.7 4.9	2.600 3.000 3.500 4.000 4.500 DS/PN: SW-	5.1 5.5 5.9 6.3 6.6 •6.009, V St Inve let Pipe 1	5.000 5.500 6.000 6.500 7.000 7.000 7.000 7.000 Molume (m ³) Diameter (mm ert Level (m	6.9 7.3 7.6 7.9 8.1 : 12.3 e Yes) 171) 14.243) 225	7.500 8.000 8.500 9.000	8.4 8.7 8.9 9.2
0.100 0.200 0.300 0.400	2.6 3.4 3.6 3.6 Hyd	0.600 0.800 1.000 1.200 1.400 dro-Brake® Unit Referen Design Head Sign Flow (1/ Flush-Fl Objecti	3.5 3.0 3.3 3.6 3.8 0 Optimu nce MD-SF (m) /s) 10™ ive Mini	1.600 1.800 2.000 2.200 2.400 m Manhol	4.1 4.3 4.5 4.7 4.9 00-1300-1500 1.300 15.0 Calculated ream storage	2.600 3.000 3.500 4.000 4.500 DS/PN: SW-	5.1 5.5 5.9 6.3 6.6 •6.009, V St Inve let Pipe 1	5.000 5.500 6.000 6.500 7.000 Volume (m ³) ump Availabl Diameter (mm ert Level (m Diameter (mm	6.9 7.3 7.6 7.9 8.1 : 12.3 e Yes) 171) 14.243) 225	7.500 8.000 8.500 9.000	8.4 8.7 8.9 9.2
0.100 0.200 0.300 0.400	2.6 3.4 3.6 3.6 Hyd	0.600 0.800 1.000 1.200 1.400 dro-Brake® Unit Referen Design Head Sign Flow (1/ Flush-Fl Objecti	3.5 3.0 3.3 3.6 3.8 0 Optimu nce MD-SF (m) /s) 10™ ive Mini	1.600 1.800 2.000 2.200 2.400 m Manhol	4.1 4.3 4.5 4.7 4.9 00-1300-1500 1.300 15.0 Calculated ream storage	2.600 3.000 3.500 4.000 4.500 DS/PN: SW-	5.1 5.5 5.9 6.3 6.6 •6.009, V St Inve let Pipe 1	5.000 5.500 6.000 6.500 7.000 Volume (m ³) ump Availabl Diameter (mm ert Level (m Diameter (mm	6.9 7.3 7.6 7.9 8.1 : 12.3 e Yes) 171) 14.243) 225	7.500 8.000 8.500 9.000	8.4 8.7 8.9 9.2
0.100 0.200 0.300 0.400	2.6 3.4 3.6 3.6 Hyd	0.600 0.800 1.000 1.200 1.400 dro-Brake® Unit Referen Design Head Sign Flow (1/ Flush-Fl Objecti	3.5 3.0 3.3 3.6 3.8 0 Optimu nce MD-SF (m) /s) 10™ ive Mini	1.600 1.800 2.000 2.200 2.400 m Manhol	4.1 4.3 4.5 4.7 4.9 00-1300-1500 1.300 15.0 Calculated ream storage	2.600 3.000 3.500 4.000 4.500 DS/PN: SW-	5.1 5.5 5.9 6.3 6.6 •6.009, V St Inve let Pipe 1	5.000 5.500 6.000 6.500 7.000 Volume (m ³) ump Availabl Diameter (mm ert Level (m Diameter (mm	6.9 7.3 7.6 7.9 8.1 : 12.3 e Yes) 171) 14.243) 225	7.500 8.000 8.500 9.000	8.4 8.7 8.9 9.2

'Connor Sutton Cronin											Page 9	
Prussia Street					PROJECT N	o. B861						
ublin 7												
reland					RESIDENTI	AL DEVELO	PMENT BEAD	RNA			Mi	icro
ate 15/05/2020					Designed	by RP						
ile B861 MD Design Drai	nage 202	00515.MI	XC		Checked b	у МК						ainage
P Solutions					Network 2	018.1						
	<u>H</u>	ydro-Bra	ake® Op	otimum Mani	nole: SW-28	, DS/PN: S	SW-6.009,	Volume	(m³): 12.3			
		Control I	Pointa	Hoad (r = 1 $r = 1$	Cont	nol Dointa	Pood	(m) Elow (1/2)		
		Control H	Points	Head (1	n) Flow (l/s)	Cont	rol Points	Head	(m) Flow (L/s)		
		Control E n Point (Calculat	ted) 1.30	00 15.0		Kick-	-Flo® 0	.854	L2.3		
				ted) 1.30	00 15.0		Kick-	-Flo® 0	.854			
The hydrological calculation	Desig	n Point (Calculat Flush-F	ted) 1.30 Flo™ 0.38	00 15.0 38 15.0	Mean Flow	Kick- over Head F	-Flo® 0 Range	.854	12.3 12.9	ld another ty	rpe of cont
	Desig ons have b	n Point (een based	Calculat Flush-E	ted) 1.30 Flo™ 0.33 Head/Discha	00 15.0 38 15.0 arge relation	Mean Flow	Kick- over Head F e Hydro-Bra	-Flo® 0 Range ke® Optimu	.854 - m as specif	12.3 12.9	ld another ty	pe of cont
device other than a Hydro-1	Desig ons have b Brake Opti	n Point (een based mum® be u	Calculat Flush-F l on the stilised	ted) 1.30 Flo™ 0.33 Head/Discha then these	00 15.0 38 15.0 arge relation storage rout	Mean Flow ship for the	Kick- over Head F e Hydro-Bra tions will 1	-Flo® 0 Range ke® Optimu be invalid	.854 - m as specif ated	12.3 12.9 ied. Shou	-	rpe of cont
device other than a Hydro-1 Depth (m) Flo	Desig ons have b Brake Opti Dw (1/s) De	n Point (een based mum® be u epth (m)	Calculat Flush-F I on the tilised Flow (1/	ted) 1.30 Flo™ 0.33 Head/Discha then these /s) Depth (n	00 15.0 38 15.0 arge relation storage rout a) Flow (1/s)	Mean Flow ship for the ing calculat Depth (m)	Kick- over Head F e Hydro-Bra tions will f Flow (l/s)	-Flo® 0 Range ke® Optimu be invalid	.854 - m as specif ated Flow (1/s)	12.3 12.9 ied. Shou:	Flow (l/s)	pe of cont.
device other than a Hydro-1 Depth (m) Flo 0.100	Desig ons have b Brake Opti ow (1/s) De 6.1	n Point (een based mum® be u epth (m) 0.600	Calculat Flush-F I on the tilised Flow (1/	ted) 1.30 Flo™ 0.33 Head/Discha then these /s) Depth (1 4.6 1.60	00 15.0 38 15.0 arge relation storage rout a) Flow (1/s) 00 16.5	Mean Flow ship for the ing calculat Depth (m) 2.600	Kick- over Head F e Hydro-Bra tions will f Flow (1/s) 20.9	-Flo® 0 Range ke® Optimu be invalid Depth (m) 5.000	.854 - m as specif ated Flow (1/s) 28.5	L2.3 L2.9 ied. Shou: Depth (m) 7.500	Flow (1/s) 34.7	rpe of cont
device other than a Hydro-1 Depth (m) Flo 0.100 0.200	Desig ons have b Brake Opti ow (1/s) De 6.1 13.9	n Point (een based mum® be u epth (m) 0.600 0.800	Calculat Flush-F I on the tilised Flow (1/ 13	ted) 1.30 Flo™ 0.33 Head/Discha then these /s) Depth (1 4.6 3.2 1.80	00 15.0 38 15.0 arge relation storage rout a) Flow (1/s) 00 16.5 00 17.5	Mean Flow ship for the ing calculat Depth (m) 2.600 3.000	Kick- over Head F e Hydro-Bra tions will f Flow (1/s) 20.9 22.3	-Flo® 0 Range ke® Optimu be invalid Depth (m) 5.000 5.500	.854 - ated Flow (1/s) 28.5 29.9	L2.3 L2.9 ied. Shou: Depth (m) 7.500 8.000	Flow (1/s) 34.7 35.8	rpe of cont
device other than a Hydro-1 Depth (m) Flo 0.100 0.200 0.300	Desig ons have b Brake Opti ow (1/s) De 6.1 13.9 14.8	n Point (een based mum® be u epth (m) 0.600 0.800 1.000	Calculat Flush-F I on the tilised Flow (1/ 13 13	ted) 1.30 Flo™ 0.33 Head/Discha then these /s) Depth (1 4.6 3.2 3.2	00 15.0 38 15.0 arge relation storage rout a) Flow (1/s) 00 16.5 00 17.5 00 18.4	Mean Flow ship for the ing calculat Depth (m) 2.600 3.000 3.500	Kick- over Head F e Hydro-Bra tions will f Flow (1/s) 20.9 22.3 24.0	-Flo® 0 Range ke® Optimu be invalid Depth (m) 5.000 5.500 6.000	.854 - m as specif ated Flow (1/s) 28.5 29.9 31.2	L2.3 L2.9 ied. Shou: Depth (m) 7.500 8.000 8.500	Flow (1/s) 34.7 35.8 36.9	rpe of cont
device other than a Hydro-D Depth (m) Flo 0.100 0.200	Desig ons have b Brake Opti ow (1/s) De 6.1 13.9	n Point (een based mum® be u epth (m) 0.600 0.800	Calculat Flush-F I on the tilised Flow (1/ 13 13 14	ted) 1.30 Flo™ 0.33 Head/Discha then these /s) Depth (1 4.6 3.2 1.80	00 15.0 38 15.0 arge relation storage rout a) Flow (1/s) 00 16.5 00 17.5 00 18.4 00 19.3	Mean Flow ship for the ing calculat Depth (m) 2.600 3.000 3.500 4.000	Kick- over Head F e Hydro-Bra tions will f Flow (1/s) 20.9 22.3	-Flo® 0 Range ke® Optimu be invalid Depth (m) 5.000 5.500 6.000 6.500	.854 - m as specif ated Flow (1/s) 28.5 29.9 31.2 32.4	L2.3 L2.9 ied. Shou: Depth (m) 7.500 8.000 8.500 9.000	Flow (1/s) 34.7 35.8 36.9 37.9	rpe of cont

O'Connor Sutton Cronin			Page 10
9 Prussia Street	PROJECT No. B861		
Dublin 7			
Ireland	RESIDENTIAL DEVELOPMENT BEARNA		Micro
Date 15/05/2020	Designed by RP		
File B861 MD Design Drainage 20200515.MDX	Checked by MK		Drainage
XP Solutions	Network 2018.1		
	Storage Structures for Surface Water		
Cellu	ular Storage Manhole: SW-12, DS/PN: SW-1.	004	
Invert I.	evel (m) 18.230 Infiltration Coefficient Side (m	(/hr) 0.00000 Porosity 0.60	
Infiltration Coefficient Base		· · ·	
Depth (m) Area (m²) Inf. Area	(m^2) Depth (m) Area (m ²) Inf. Area (m ²) Depth (m) Area (m²) Inf. Area (m²)	
0.000 365.0	0.0 2.150 365.0 0.0 2.1	51 0.0 0.0	
Cellu	ular Storage Manhole: SW-28, DS/PN: SW-6.	<u>009</u>	
Invert Le Infiltration Coefficient Base	evel (m) 14.243 Infiltration Coefficient Side (m e (m/hr) 0.00000 Safety Fa	· · ·	
		m) Area (m²) Inf. Area (m²)	
Depth (m) Area (m²) Inf. Area	(m^2) Depth (m) Area (m^2) Inf. Area (m^2) Depth (

O'Connor Sutton Cron	in													Page 11
9 Prussia Street						PROJEC	CT No. B86	1						
Dublin 7														
Ireland						RESIDE	INTIAL DEV	ELOPMEI	NT BEAF	RNA				Micco
Date 15/05/2020							ned by RP							- Micro
	Dradin	202005	1 E MDV			-	-							Drainage
File B861_MD Design	Draii	lage_202003	DIG.MDX				ed by MK							
XP Solutions						Networ	k 2018.1							
	<u>1 ye</u>	ar Return 1	Period Summ	ary of	<u>Crit</u>	ical R	esults by	Maximu	m Leve	l (Rank	: 1) for	Surface	<u>Water</u>	
		Hot Start (m Start Level Number o		Foul a dditiona graphs 0	Sewag l Flo Nu	loss Coe e per he w - % o: umber of	ectare (l/s f Total Flo Offline Co) 0.500) 0.000 w 0.000	Flow pe:) Number	r Person of Time	Inlet Co per Day (/Area Diag	peffiecient 1/per/day grams 0	t 0.800	
		Margi	n for Flood F	ion Scot Risk Warn Analysis	land	and Ire mm) tep 2.5	<u>r Rainfall</u> FSR M5-60 land Rat Second Inc	(mm) 15. io R 0.	.246 Cv 300 (Extende	(Winter)	0.840 VD Status			
	Re	Duration turn Period(30, 240, 36), 480,	600, 720				320, 0080 100	
						Water	Surcharged	Flooded				Maximum	Pipe	
τ	JS/MH			US	S/CL		Depth		Flow /	Overflow	Maximum			
PN 1	Name		Event	((m)	(m)	(m)	(m³)	Cap.	(l/s)	Vol (m³)	(m/s)	(l/s)	Status
cr. 1. 000	017 1	15		T:000 00	401	01 500	0 145	0 000	0 07		0 005	0.0	10.0	o
			year Winter year Winter				-0.145 -0.161	0.000	0.27 0.18		0.085		10.2 10.7	OK OK
			-											
			year Winter				-0.130	0.000	0.37		0.143		28.9	OK
			year Winter				-0.159	0.000	0.44		0.153		31.9	OK
			year Winter				0.177	0.000	0.10		0.534			SURCHARGED
			year Winter				-0.198	0.000	0.24		0.110			OK
			year Winter				-0.147	0.000	0.33		0.764	0.6	19.5	OK
SW-4.000	SW-8	15 minute 1	year Winter	I+20% 20	.370	19.445	-0.175	0.000	0.35		0.136	0.9	23.6	OK
SW-3.002	SW-9	15 minute 1	year Winter	I+20% 20	.887	19.036	-0.105	0.000	0.74		0.818	0.9	45.4	OK
						©1982-	-2018 Innc	vyze						

O'Connor Sutton Cronin		Page 12
9 Prussia Street	PROJECT No. B861	
Dublin 7		
Ireland	RESIDENTIAL DEVELOPMENT BEARNA	Micro
Date 15/05/2020	Designed by RP	Drainage
File B861_MD Design Drainage_20200515.MDX	Checked by MK	Diamage
XP Solutions	Network 2018.1	

1 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Surface Water

	US/MH			US/CL	Level	Surcharged Depth	Volume			Maximum	Maximum Velocity	Flow	
PN	Name	Event		(m)	(m)	(m)	(m³)	Cap.	(1/s)	Vol (m³)	(m/s)	(1/s)	Status
SW-5.000	SW-10	15 minute 1 year W	inter I+20%	21.465	20.093	-0.172	0.000	0.13		0.055	1.3	9.3	OK
SW-3.003	SW-11	15 minute 1 year W	inter I+20%	20.998	18.911	-0.152	0.000	0.65		0.707	0.8	52.7	OK
SW-1.004	SW-12	720 minute 1 year W	inter I+20%	21.074	18.771	0.316	0.000	0.10		121.576	0.6	3.6	SURCHARGED
SW-6.000	SW-13	15 minute 1 year S	ummer I+20%	17.386	15.785	-0.164	0.000	0.17		0.063	0.8	7.1	OK
SW-6.001	SW-14	15 minute 1 year S	ummer I+20%	17.197	15.684	-0.152	0.000	0.23		0.125	0.6	7.1	OK
SW-7.000	SW-15	15 minute 1 year W	inter I+20%	17.255	16.212	-0.170	0.000	0.14		0.056	1.5	11.5	OK
SW-6.002	SW-16	15 minute 1 year W	inter I+20%	17.205	15.638	-0.150	0.000	0.49		0.222	0.9	31.8	OK
SW-6.003	SW-17	15 minute 1 year W	inter I+20%	16.839	15.508	-0.137	0.000	0.57		0.839	0.8	31.3	OK
SW-8.000	SW-18	15 minute 1 year W	inter I+20%	19.455	17.920	-0.135	0.000	0.33		0.096	2.4	35.2	OK
SW-6.004	SW-19	15 minute 1 year W	inter I+20%	16.798	15.281	-0.133	0.000	0.71		0.360	1.0	74.6	OK
SW-6.005	SW-20	15 minute 1 year W	inter I+20%	16.564	15.178	-0.085	0.000	0.95		3.239	0.8	72.6	OK
SW-6.006	SW-21	15 minute 1 year W	inter I+20%	16.521	14.889	-0.150	0.000	0.66		0.329	1.1	77.8	OK
SW-9.000	SW-22	15 minute 1 year W	inter I+20%	16.137	14.872	-0.226	0.000	0.12		0.078	0.5	6.7	OK
SW-9.001	SW-23	15 minute 1 year W	inter I+20%	16.190	14.845	-0.208	0.000	0.20		0.206	0.7	13.1	OK
SW-6.007	SW-24	15 minute 1 year W	inter I+20%	16.419	14.696	-0.165	0.000	0.68		1.170	0.8	88.1	OK
SW-10.000	SW-25	15 minute 1 year S	ummer I+20%	18.324	16.980	-0.144	0.000	0.28		0.086	0.6	7.9	OK
SW-6.008	SW-26	15 minute 1 year W	inter I+20%	18.621	14.638	-0.174	0.000	0.67		1.914	0.9	88.5	OK
SW-11.000	SW-27	180 minute 1 year W	inter I+20%	15.900	14.560	-0.140	0.000	0.05		0.175	0.5	3.2	OK
SW-6.009	SW-28	180 minute 1 year W	inter I+20%	15.770	14.559	0.016	0.000	0.23		87.725	0.8	14.8	SURCHARGED
SW-6.010	SW-29	180 minute 1 year W	inter I+20%	16.055	14.234	-0.203	0.000	0.23		0.287	0.7	14.8	OK
SW-6.011	SW-30	180 minute 1 year W	inter I+20%	15.117	14.105	-0.204	0.000	0.23		0.287	0.8	14.8	OK
SW-12.000	SW-31	360 minute 1 year W	inter I+20%	15.000	14.085	-0.300	0.000	0.00		0.000	0.0	0.0	OK
SW-12.001	SW-32	360 minute 1 year W	inter I+20%	15.000	14.035	-0.300	0.000	0.00		0.000	0.0	0.0	OK
SW-6.012	SW-33	180 minute 1 year W	inter I+20%	15.100	13.951	-0.204	0.000	0.22		0.470	0.8	14.8	OK

O'Connor Sutton Cr	conin												Page 13	
9 Prussia Street					PROJEC	T No. B861	L							
Dublin 7														
Ireland					RESIDE	NTIAL DEVE	ELOPMEN	T BEARI	NA				Micco	
Date 15/05/2020					Design	ed by RP							Micio	
	m Dra	inage 20200515.MDX			-	d by MK							Draina	I I I I I I I I
XP Solutions					Networ	k 2018.1								
	<u>30</u>	year Return Period Su	ummary o	<u>f Crit</u>	ical R	esults by	<u>Maximu</u>	m Level	l (Rank	1) for \$	Surface N	<u>Water</u>		
) Foul Addition	Sewage al Flov	oss Coe per he 7 - % of	ctare (l/s) Total Flow	0.500 0.000 0.000 F	low per	Person p	Inlet Coe Der Day (1	ffiecient /per/day)	0.800		
		Number of Input Hyd Number of Online								-				
		Rainfall F				Rainfall D FSR M5-60 (and Rati	mm) 15.0							
		Margin for Elec.	d Dick Mar	coina (~~)			300.	0 D17	D Status C	TT			
		Margin for Flood				Second Incr	ement (F							
			-	DTS Sta	-	becond inci	cilicite (1	0		a beacab e	11			
		Drofilo(a)								Cummon	and Wint	~ ~		
		Profile(s)	15 3	0. 60.	120. 18	0 040 060		00 700	960 14					
		Duration(s) (mins)			120 , 10		480 6			40 2160		()		
		Duration(s) (mins)	10, 3			0, 240, 360	, 480, 6	00, 720,						
	1		10, 3			0, 240, 360	, 480, 6	00, 720,		40, 2160, 60, 7200,	8640, 100	80		
	:	Duration(s) (mins) Return Period(s) (years) Climate Change (%)	10, 3			0, 240, 360	, 480, 6	00, 720,				80 00		
		Return Period(s) (years)	13, 3			0, 240, 360	, 480, 6	00, 720,			8640, 100 1, 30, 1	80 00		
		Return Period(s) (years)	10, 3					00, 720,			8640, 100 1, 30, 1 20, 20,	80 00 20		
		Return Period(s) (years) Climate Change (%)	13, 3			Surcharged	Flooded		57	60, 7200,	8640, 100 1, 30, 1 20, 20, Maximum	80 00 20 Pipe		
PN	us/mh	Return Period(s) (years) Climate Change (%)	13, 3	•	Level	Surcharged Depth	Flooded Volume	Flow /	57 Overflow	60, 7200, Maximum	8640, 100 1, 30, 1 20, 20, Maximum Velocity	80 00 20 Pipe Flow	Status	
PN	US/MH Name	Return Period(s) (years) Climate Change (%) Event		(m)	Level (m)	Surcharged Depth (m)	Flooded Volume (m³)	Flow / Cap.	57 Overflow	60, 7200, Maximum Vol (m ³)	8640, 100 1, 30, 1 20, 20, Maximum Velocity (m/s)	80 00 20 Pipe Flow (l/s)	Status	
SW-1.000	US/MH Name SW-1	Return Period(s) (years) Climate Change (%) Event 15 minute 30 year Wint	er I+20%	(m) 22.421	Level (m) 21.573	Surcharged Depth (m) -0.098	Flooded Volume (m ³) 0.000	Flow / Cap. 0.61	57 Overflow	60, 7200, Maximum Vol (m ³) 0.138	8640, 100 1, 30, 1 20, 20, Maximum Velocity (m/s) 1.0	80 00 20 Pipe Flow (l/s) 22.6	OK	
SW-1.000 SW-2.000	US/MH Name SW-1 SW-2	Return Period(s) (years) Climate Change (%) Event 15 minute 30 year Wint 15 minute 30 year Wint	cer I+20% cer I+20%	(m) 22.421 22.734	Level (m) 21.573 21.408	Surcharged Depth (m) -0.098 -0.126	Flooded Volume (m ³) 0.000 0.000	Flow / Cap. 0.61 0.40	57 Overflow	60, 7200, Maximum Vol (m ³) 0.138 0.106	8640, 100 1, 30, 1 20, 20, Maximum Velocity (m/s) 1.0 1.4	80 00 20 Pipe Flow (1/s) 22.6 23.7	OK OK	
SW-1.000 SW-2.000 SW-1.001	US/MH Name SW-1 SW-2 SW-3	Return Period(s) (years) Climate Change (%) Event 15 minute 30 year Wint 15 minute 30 year Wint 15 minute 30 year Wint	cer I+20% cer I+20% cer I+20%	(m) 22.421 22.734 22.350	Level (m) 21.573 21.408 21.089	Surcharged Depth (m) -0.098 -0.126 -0.060	Flooded Volume (m ³) 0.000 0.000 0.000	Flow / Cap. 0.61 0.40 0.88	57 Overflow	<pre>60, 7200, Maximum Vol (m³) 0.138 0.106 0.332</pre>	8640, 100 1, 30, 1 20, 20, Maximum Velocity (m/s) 1.0 1.4 2.2	80 00 20 Pipe Flow (1/s) 22.6 23.7 68.8	OK OK	
SW-1.000 SW-2.000 SW-1.001 SW-1.002	US/MH Name SW-1 SW-2 SW-3 SW-4	Return Period(s) (years) Climate Change (%) Event 15 minute 30 year Wint 15 minute 30 year Wint 15 minute 30 year Wint 15 minute 30 year Summ	cer I+20% cer I+20% cer I+20% ner I+20%	(m) 22.421 22.734 22.350 21.878	Level (m) 21.573 21.408 21.089 20.679	Surcharged Depth (m) -0.098 -0.126 -0.060 0.002	Flooded Volume (m ³) 0.000 0.000 0.000 0.000	Flow / Cap. 0.61 0.40 0.88 1.05	57 Overflow	Maximum Vol (m ³) 0.138 0.106 0.332 0.340	8640, 100 1, 30, 1 20, 20, Maximum Velocity (m/s) 1.0 1.4 2.2 1.2	80 00 20 Pipe Flow (1/s) 22.6 23.7 68.8 76.1	OK OK SURCHARGED	
SW-1.000 SW-2.000 SW-1.001 <u>SW-1.002</u> SW-1.003	US/MH Name SW-1 SW-2 SW-3 SW-4 SW-5	Return Period(s) (years) Climate Change (%) Event 15 minute 30 year Wint 15 minute 30 year Wint 15 minute 30 year Wint 15 minute 30 year Summ 1440 minute 30 year Wint	cer I+20% cer I+20% cer I+20% mer I+20% cer I+20%	(m) 22.421 22.734 22.350 21.878 22.223	Level (m) 21.573 21.408 21.089 20.679 19.518	Surcharged Depth (m) -0.098 -0.126 -0.060 0.002 0.922	Flooded Volume (m ³) 0.000 0.000 0.000 0.000 0.000	Flow / Cap. 0.61 0.40 0.88 1.05 0.13	57 Overflow	Maximum Vol (m ³) 0.138 0.106 0.332 0.340 1.377	8640, 100 1, 30, 1 20, 20, Maximum Velocity (m/s) 1.0 1.4 2.2 1.2 0.3	80 00 20 Pipe Flow (1/s) 22.6 23.7 68.8 76.1 5.7	OK OK SURCHARGED SURCHARGED	
SW-1.000 SW-2.000 SW-1.001 SW-1.002 SW-1.003 SW-3.000	US/MH Name SW-1 SW-2 SW-3 SW-4 SW-5 SW-6	Return Period(s) (years) Climate Change (%) Event 15 minute 30 year Wint 15 minute 30 year Wint 15 minute 30 year Wint 15 minute 30 year Summ 1440 minute 30 year Wint 1440 minute 30 year Wint	cer I+20% cer I+20% cer I+20% ner I+20% cer I+20% cer I+20%	(m) 22.421 22.734 22.350 21.878 22.223 20.122	Level (m) 21.573 21.408 21.089 20.679 19.518 19.521	Surcharged Depth (m) -0.098 -0.126 -0.060 0.002	Flooded Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000	Flow / Cap. 0.61 0.40 0.88 1.05 0.13 0.04	57 Overflow	Maximum Vol (m ³) 0.138 0.106 0.332 0.340 1.377 0.502	8640, 100 1, 30, 1 20, 20, Maximum Velocity (m/s) 1.0 1.4 2.2 1.2	80 00 20 Pipe Flow (1/s) 22.6 23.7 68.8 76.1 5.7	OK OK SURCHARGED	
SW-1.000 SW-2.000 SW-1.001 SW-1.002 SW-1.003 SW-3.000	US/MH Name SW-1 SW-2 SW-3 SW-4 SW-5 SW-6	Return Period(s) (years) Climate Change (%) Event 15 minute 30 year Wint 15 minute 30 year Wint 15 minute 30 year Wint 15 minute 30 year Summ 1440 minute 30 year Wint	cer I+20% cer I+20% cer I+20% ner I+20% cer I+20% cer I+20%	(m) 22.421 22.734 22.350 21.878 22.223 20.122	Level (m) 21.573 21.408 21.089 20.679 19.518 19.521	Surcharged Depth (m) -0.098 -0.126 -0.060 0.002 0.922	Flooded Volume (m ³) 0.000 0.000 0.000 0.000 0.000	Flow / Cap. 0.61 0.40 0.88 1.05 0.13	57 Overflow	Maximum Vol (m ³) 0.138 0.106 0.332 0.340 1.377	8640, 100 1, 30, 1 20, 20, Maximum Velocity (m/s) 1.0 1.4 2.2 1.2 0.3	80 00 20 Pipe Flow (1/s) 22.6 23.7 68.8 76.1 5.7 2.7	OK OK SURCHARGED SURCHARGED	
SW-1.000 SW-2.000 SW-1.001 SW-1.002 SW-1.003 SW-3.000 SW-3.001	US/MH Name SW-1 SW-2 SW-3 SW-4 SW-5 SW-6 SW-7	Return Period(s) (years) Climate Change (%) Event 15 minute 30 year Wint 15 minute 30 year Wint 15 minute 30 year Wint 15 minute 30 year Summ 1440 minute 30 year Wint 1440 minute 30 year Wint	cer I+20% cer I+20% cer I+20% cer I+20% cer I+20% cer I+20% cer I+20%	(m) 22.421 22.734 22.350 21.878 22.223 20.122 20.799	Level (m) 21.573 21.408 21.089 20.679 19.518 19.521 19.520	Surcharged Depth (m) -0.098 -0.126 -0.060 0.002 0.922 0.149	Flooded Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000	Flow / Cap. 0.61 0.40 0.88 1.05 0.13 0.04	57 Overflow	Maximum Vol (m ³) 0.138 0.106 0.332 0.340 1.377 0.502	8640, 100 1, 30, 1 20, 20, Maximum Velocity (m/s) 1.0 1.4 2.2 1.2 0.3 0.5	80 00 20 Pipe Flow (1/s) 22.6 23.7 68.8 76.1 5.7 2.7 3.7	OK OK SURCHARGED SURCHARGED SURCHARGED	
SW-1.000 SW-2.000 SW-1.001 SW-1.002 SW-1.003 SW-3.000 SW-3.001 SW-4.000	US/MH Name SW-1 SW-2 SW-3 SW-4 SW-5 SW-6 SW-7 SW-8	Return Period(s) (years) Climate Change (%) Event 15 minute 30 year Wint 15 minute 30 year Wint 15 minute 30 year Wint 15 minute 30 year Summ 1440 minute 30 year Wint 1440 minute 30 year Wint	cer I+20% cer I+20% cer I+20% cer I+20% cer I+20% cer I+20% cer I+20% cer I+20%	(m) 22.421 22.734 22.350 21.878 22.223 20.122 20.799 20.370	Level (m) 21.573 21.408 21.089 20.679 19.518 19.521 19.520 19.525	Surcharged Depth (m) -0.098 -0.126 -0.060 0.002 0.922 0.149 0.314	Flooded Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Flow / Cap. 0.61 0.40 0.88 1.05 0.13 0.04 0.06	57 Overflow	Maximum Vol (m ³) 0.138 0.106 0.332 0.340 1.377 0.502 3.491	8640, 100 1, 30, 1 20, 20, Maximum Velocity (m/s) 1.0 1.4 2.2 1.2 0.3 0.5 0.5	80 00 20 Pipe Flow (1/s) 22.6 23.7 68.8 76.1 5.7 2.7 3.7 50.1	OK OK SURCHARGED SURCHARGED SURCHARGED SURCHARGED	

O'Connor Sutton Cronin									Page 14
9 Prussia Street	PROJEC	CT No. B861							
Dublin 7									
Ireland	RESIDE	ENTIAL DEVE	LOPMEN	r bear	NA				Micro
Date 15/05/2020	Desigr	ned by RP							
File B861_MD Design Drainage_20200515.MDX	Checke	ed by MK							Drainage
XP Solutions	Networ	ck 2018.1						I	
		Surcharged	Flooded				Maximum Velocity	Pipe Flow	Status
SW-5.000 SW-10 15 minute 30 year Winter I+20% 21	.465 20.122	-0.143	0.000	0.29		0.087	1.6	20.6	OK

	US/MH			US/CL	Water Level	Surcharged Depth		Flow /	Overflow	Maximum	Maximum Velocity	-	
PN	Name	Event		(m)	(m)	(m)	(m³)	Cap.	(1/s)	Vol (m³)	(m/s)	(l/s)	Status
SW-5.000	SW-10	15 minute 30 year W	Winter I+20%	21.465	20.122	-0.143	0.000	0.29		0.087	1.6	20.6	OK
SW-3.003	SW-11	1440 minute 30 year W	Winter I+20%	20.998	19.517	0.454	0.000	0.12		2.438	0.5	9.4	SURCHARGED
SW-1.004	SW-12	1440 minute 30 year W	Winter I+20%	21.074	19.516	1.061	0.000	0.10		286.082	0.6	3.7	SURCHARGED
SW-6.000	SW-13	15 minute 30 year W	Winter I+20%	17.386	16.009	0.060	0.000	0.34		0.317	1.0	14.4	SURCHARGED
SW-6.001	SW-14	15 minute 30 year W	Winter I+20%	17.197	15.989	0.153	0.000	0.56		0.858	0.6	17.4	SURCHARGED
SW-7.000	SW-15	15 minute 30 year W	Winter I+20%	17.255	16.241	-0.141	0.000	0.30		0.089	1.9	25.6	OK
SW-6.002		15 minute 30 year W				0.186	0.000	0.99		1.039	1.0		SURCHARGED
SW-6.003	SW-17	15 minute 30 year W	Winter I+20%	16.839	15.825	0.180	0.000	1.26		2.928	1.0	69.3	SURCHARGED
SW-8.000	SW-18	15 minute 30 year W	Winter I+20%	19.455	17.975	-0.080	0.000	0.74		0.158	2.9	77.9	OK
SW-6.004	SW-19	15 minute 30 year W	Winter I+20%	16.798	15.758	0.344	0.000	1.52		2.020	1.5	159.3	SURCHARGED
SW-6.005		15 minute 30 year W				0.131	0.000	2.10		5.648			SURCHARGED
SW-6.006	SW-21	15 minute 30 year W				0.189	0.000	1.43		1.361	1.5		SURCHARGED
SW-9.000	SW-22	240 minute 30 year W	Winter I+20%	16.137	15.113	0.015	0.000	0.06		0.350	0.4	3.6	SURCHARGED
SW-9.001	SW-23	240 minute 30 year W				0.059	0.000	0.12		1.074	0.7	8.1	SURCHARGED
SW-6.007		240 minute 30 year W				0.248	0.000	0.43		6.216	0.6		SURCHARGED
SW-10.000		15 minute 30 year S	Summer I+20%	18.324	17.028	-0.096	0.000	0.62		0.140	0.7	17.5	OK
SW-6.008	SW-26	240 minute 30 year W				0.294	0.000	0.44		4.079	0.7	58.0	SURCHARGED
SW-11.000	SW-27	240 minute 30 year W				0.400	0.000	0.09		0.786	0.5		SURCHARGED
SW-6.009		240 minute 30 year W				0.556	0.000	0.24		232.251	0.8		SURCHARGED
SW-6.010	SW-29	1440 minute 30 year S	Summer I+20%	16.055	14.235	-0.203	0.000	0.23		0.289	0.8	15.0	OK
		1440 minute 30 year S				-0.203	0.000	0.23		0.289	0.8	15.0	OK
		360 minute 30 year W				-0.300	0.000	0.00		0.000	0.0	0.0	OK
SW-12.001	SW-32	360 minute 30 year W	Winter I+20%	15.000	14.035	-0.300	0.000	0.00		0.000	0.0	0.0	OK
SW-6.012	SW-33	1440 minute 30 year S	Summer I+20%	15.100	13.952	-0.204	0.000	0.23		0.472	0.8	15.0	OK

O'Connor Sutton C:												Page 15
9 Prussia Street				PROJECT	No. B861							
Dublin 7												
Ireland				RESIDEN	TIAL DEVE	LOPMENT	BEARN	JA				Micco
Date 15/05/2020					d by RP							Micro
	D	in and 20200E1E MDV		-	-							Drainage
—	gn Dra	ainage_20200515.MDX		Checked								
XP Solutions				Network	2018.1							
	<u>100</u>	year Return Period Summ	<u>ary of Crit</u>	cical Re	esults by	Maximu	m Leve	l (Rank	1) for (Surface	<u>Water</u>	
			Foul Sewage dditional Flow graphs 0 Num	oss Coef per hec - % of nber of (tare (l/s) Total Flow Dffline Con	0.500 0.000 0.000 Fl	low per Number	Person po of Time/A	Inlet Coef er Day (l/ Area Diagr	fiecient per/day) ams 0	0.800	
		Margin for Flood Ri	del ion Scotland a	F and Irela nm)		mm) 15.0 o R 0.2	46 Cv (1 300.0	Winter) () DVD).840 Status O			
		Profile(s) Duration(s) (mins)	DTS Stat 15, 30, 60,		, 240, 360,	480 , 60	or 00, 720,	960, 144			Ο,	
		Return Period(s) (years)						576	50, 7200,			
		Return Period(s) (years) Climate Change (%)						576	50, 7200,	1, 30, 1008 20, 20, 2	0 0	
		-						576	50, 7200,	1, 30, 10	0 0	
		-		Water	Surcharged	Flooded		576	50, 7200,	1, 30, 10 20, 20, 2	00 20	
	us/MH	Climate Change (%)	US/CL	Water Level	Surcharged Depth		Flow /		50, 7200, Maximum	1, 30, 10 20, 20, 2 Maximum	00 20 Pipe	
PN		Climate Change (%)	US/CL (m)		-		Flow / Cap.	Overflow		1, 30, 10 20, 20, 2 Maximum Velocity	20 Pipe Flow	Status
	US/MH Name	Climate Change (%) Event	(m)	Level (m)	Depth (m)	Volume (m³)	Cap.	Overflow	Maximum Vol (m³)	1, 30, 10 20, 20, 2 Maximum Velocity (m/s)	Pipe Flow (1/s)	
SW-1.000	US/MH Name SW-1	Climate Change (%) Event 15 minute 100 year Winter	(m) I+20% 22.421	Level (m) 21.596	Depth (m) -0.075	Volume (m ³) 0.000	Cap .	Overflow	Maximum Vol (m³) 0.165	1, 30, 10 20, 20, 2 Maximum Velocity (m/s) 1.0	D0 20 Pipe Flow (l/s) 29.1	OK
SW-1.000 SW-2.000	US/MH Name SW-1 SW-2	Climate Change (%) Event 15 minute 100 year Winter 15 minute 100 year Winter	(m) I+20% 22.421 I+20% 22.734	Level (m) 21.596 21.424	Depth (m) -0.075 -0.110	Volume (m ³) 0.000 0.000	Cap. 0.78 0.52	Overflow	Maximum Vol (m ³) 0.165 0.125	1, 30, 10 20, 20, 2 Maximum Velocity (m/s) 1.0 1.5	D0 20 Pipe Flow (l/s) 29.1 30.6	OK OK
SW-1.000 SW-2.000 SW-1.001	US/MH Name SW-1 SW-2 SW-3	Climate Change (%) Event 15 minute 100 year Winter 15 minute 100 year Winter 15 minute 100 year Winter	(m) I+20% 22.421 I+20% 22.734 I+20% 22.350	Level (m) 21.596 21.424 21.221	Depth (m) -0.075 -0.110 0.072	Volume (m ³) 0.000 0.000 0.000	Cap. 0.78 0.52 1.11	Overflow	Maximum Vol (m ³) 0.165 0.125 0.787	1, 30, 10 20, 20, 2 Maximum Velocity (m/s) 1.0 1.5 2.2	Pipe Flow (l/s) 29.1 30.6 86.3	OK OK SURCHARGED
SW-1.000 SW-2.000 SW-1.001 SW-1.002	US/MH Name SW-1 SW-2 SW-3 SW-4	Climate Change (%) Event 15 minute 100 year Winter 15 minute 100 year Winter 15 minute 100 year Winter 15 minute 100 year Winter	(m) I+20% 22.421 I+20% 22.734 I+20% 22.350 I+20% 21.878	Level (m) 21.596 21.424 21.221 20.747	Depth (m) -0.075 -0.110 0.072 0.070	Volume (m ³) 0.000 0.000 0.000 0.000	Cap. 0.78 0.52 1.11 1.35	Overflow	Maximum Vol (m ³) 0.165 0.125 0.787 0.448	1, 30, 10 20, 20, 2 Maximum Velocity (m/s) 1.0 1.5 2.2 1.4	Pipe Flow (1/s) 29.1 30.6 86.3 97.3	OK OK SURCHARGED SURCHARGED
SW-1.000 SW-2.000 SW-1.001 SW-1.002 SW-1.003	US/MH Name SW-1 SW-2 SW-3 SW-4 SW-5	Climate Change (%) Event 15 minute 100 year Winter 15 minute 100 year Winter 15 minute 100 year Winter 15 minute 100 year Winter 1440 minute 100 year Winter	(m) I+20% 22.421 I+20% 22.734 I+20% 22.350 I+20% 21.878 I+20% 22.223	Level (m) 21.596 21.424 21.221 20.747 19.923	Depth (m) -0.075 -0.110 0.072 0.070 1.327	Volume (m ³) 0.000 0.000 0.000 0.000 0.000	Cap. 0.78 0.52 1.11 1.35 0.16	Overflow	Maximum Vol (m ³) 0.165 0.125 0.787 0.448 1.835	1, 30, 10 20, 20, 2 Maximum Velocity (m/s) 1.0 1.5 2.2 1.4 0.3	Pipe Flow (1/s) 29.1 30.6 86.3 97.3 7.0	OK OK SURCHARGED SURCHARGED SURCHARGED
SW-1.000 SW-2.000 SW-1.001 SW-1.002 SW-1.003 SW-3.000	US/MH Name SW-1 SW-2 SW-3 SW-4 SW-5 SW-6	Climate Change (%) Event 15 minute 100 year Winter 15 minute 100 year Winter 15 minute 100 year Winter 15 minute 100 year Winter 1440 minute 100 year Winter 1440 minute 100 year Winter	(m) I+20% 22.421 I+20% 22.734 I+20% 22.350 I+20% 21.878 I+20% 22.223 I+20% 20.122	Level (m) 21.596 21.424 21.221 20.747 19.923 19.926	Depth (m) -0.075 -0.110 0.072 0.070 1.327 0.554	Volume (m ³) 0.000 0.000 0.000 0.000 0.000	Cap. 0.78 0.52 1.11 1.35 0.16 0.05	Overflow	Maximum Vol (m ³) 0.165 0.125 0.787 0.448 1.835 0.960	1, 30, 10 20, 20, 2 Maximum Velocity (m/s) 1.0 1.5 2.2 1.4 0.3 0.5	Pipe Flow (1/s) 29.1 30.6 86.3 97.3 7.0 3.3	OK OK SURCHARGED SURCHARGED SURCHARGED FLOOD RISK
SW-1.000 SW-2.000 SW-1.001 SW-1.002 SW-1.003 SW-3.000 SW-3.001	US/MH Name SW-1 SW-2 SW-3 SW-4 SW-5 SW-6 SW-7	Climate Change (%) Event 15 minute 100 year Winter 15 minute 100 year Winter 15 minute 100 year Winter 15 minute 100 year Winter 1440 minute 100 year Winter 1440 minute 100 year Winter 1440 minute 100 year Winter	(m) I+20% 22.421 I+20% 22.734 I+20% 22.350 I+20% 21.878 I+20% 22.223 I+20% 20.122 I+20% 20.799	Level (m) 21.596 21.424 21.221 20.747 19.923 19.926 19.925	Depth (m) -0.075 -0.110 0.072 0.070 1.327 0.554 0.720	Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Cap. 0.78 0.52 1.11 1.35 0.16 0.05 0.07	Overflow	Maximum Vol (m ³) 0.165 0.125 0.787 0.448 1.835 0.960 3.949	1, 30, 10 20, 20, 2 Maximum Velocity (m/s) 1.0 1.5 2.2 1.4 0.3 0.5 0.5	Pipe Flow (1/s) 29.1 30.6 86.3 97.3 7.0 3.3 4.1	OK OK SURCHARGED SURCHARGED FLOOD RISK SURCHARGED
SW-1.000 SW-2.000 SW-1.001 SW-1.002 SW-1.003 SW-3.000 SW-3.001 SW-4.000	US/MH Name SW-1 SW-2 SW-3 SW-4 SW-5 SW-6 SW-6 SW-7 SW-8	Climate Change (%) Event 15 minute 100 year Winter 15 minute 100 year Winter 15 minute 100 year Winter 15 minute 100 year Winter 1440 minute 100 year Winter 1440 minute 100 year Winter 1440 minute 100 year Winter 1440 minute 100 year Winter	(m) I+20% 22.421 I+20% 22.734 I+20% 22.350 I+20% 21.878 I+20% 22.223 I+20% 20.122 I+20% 20.799 I+20% 20.370	Level (m) 21.596 21.424 21.221 20.747 19.923 19.926 19.925 19.926	Depth (m) -0.075 -0.110 0.072 0.070 1.327 0.554 0.720 0.306	Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Cap. 0.78 0.52 1.11 1.35 0.16 0.05 0.07 0.07	Overflow	Maximum Vol (m ³) 0.165 0.125 0.787 0.448 1.835 0.960 3.949 0.680	1, 30, 10 20, 20, 2 Maximum Velocity (m/s) 1.0 1.5 2.2 1.4 0.3 0.5 0.5 0.6	Pipe Flow (1/s) 29.1 30.6 86.3 97.3 7.0 3.3 4.1 5.0	OK OK SURCHARGED SURCHARGED FLOOD RISK SURCHARGED SURCHARGED
SW-1.000 SW-2.000 SW-1.001 SW-1.002 SW-1.003 SW-3.000 SW-3.001 SW-4.000	US/MH Name SW-1 SW-2 SW-3 SW-4 SW-5 SW-6 SW-6 SW-7 SW-8	Climate Change (%) Event 15 minute 100 year Winter 15 minute 100 year Winter 15 minute 100 year Winter 15 minute 100 year Winter 1440 minute 100 year Winter 1440 minute 100 year Winter 1440 minute 100 year Winter	(m) I+20% 22.421 I+20% 22.734 I+20% 22.350 I+20% 21.878 I+20% 22.223 I+20% 20.122 I+20% 20.799 I+20% 20.370	Level (m) 21.596 21.424 21.221 20.747 19.923 19.926 19.925 19.926	Depth (m) -0.075 -0.110 0.072 0.070 1.327 0.554 0.720	Volume (m ³) 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Cap. 0.78 0.52 1.11 1.35 0.16 0.05 0.07	Overflow	Maximum Vol (m ³) 0.165 0.125 0.787 0.448 1.835 0.960 3.949	1, 30, 10 20, 20, 2 Maximum Velocity (m/s) 1.0 1.5 2.2 1.4 0.3 0.5 0.5	Pipe Flow (1/s) 29.1 30.6 86.3 97.3 7.0 3.3 4.1 5.0	OK OK SURCHARGED SURCHARGED FLOOD RISK SURCHARGED

O'Connor Sutton Cronin		Page 16
9 Prussia Street	PROJECT No. B861	
Dublin 7		
Ireland	RESIDENTIAL DEVELOPMENT BEARNA	Micro
Date 15/05/2020	Designed by RP	Drainage
File B861_MD Design Drainage_20200515.MDX	Checked by MK	Diamaye
XP Solutions	Network 2018.1	

100 year Return Period Summary of Critical Results by Maximum Level (Rank 1) for Surface Water

PN	US/MH Name			E	vent			US/CL (m)	Water Level (m)	Surcharged Depth (m)		Flow / Cap.	Overflow (l/s)	Maximum Vol (m³)	Maximum Velocity (m/s)	-	Status
GF4 E 000	051 10	1 -		100		77	T 1 0 0 0	01 465	20 124	0 1 2 1	0 000	0 07		0 1 0 1	1 7		07
SW-5.000 SW-3.003			minute		-					-0.131 0.858	0.000	0.37 0.13		0.101 3.396	1.7 0.5	26.6	OK
					-					1.466	0.000	0.13		375.289	0.3		SURCHARGED SURCHARGED
SW-1.004 SW-6.000					-						0.000	0.11		0.843			SURCHARGED
SW-6.000 SW-6.001			minute minute		-					0.525	0.000	0.36		1.385	0.9		SURCHARGED
SW-0.001 SW-7.000			minute		-					0.017	0.000	0.71		0.360	2.0		SURCHARGED
SW-6.002			minute		-					0.654	0.000	1.12		1.885	2.0		SURCHARGED
SW-6.002			minute		-					0.642	0.000	1.42		3.456	1.0		SURCHARGED
SW-8.000			minute		-					0.042	0.000	0.90		0.319	2.9		SURCHARGED
SW-6.004			minute		-					0.801	0.000	1.80		3.083			SURCHARGED
SW-6.005			minute		-					0.470	0.000	2.45		6.144			SURCHARGED
SW-6.006			minute		-					0.471	0.000	1.70		1.841			SURCHARGED
SW-9.000			minute		-					0.352	0.000	0.06		0.732	0.4		SURCHARGED
SW-9.001			minute		-					0.396	0.000	0.11		1.474	0.6		SURCHARGED
SW-6.007			minute		-					0.585	0.000	0.41		6.701	0.6		SURCHARGED
SW-10.000	SW-25		minute		-					-0.072	0.000	0.80		0.168	0.8	22.6	OK
SW-6.008	SW-26		minute		-					0.631	0.000	0.43		4.561	0.6	57.4	SURCHARGED
SW-11.000	SW-27	360	minute	100	year	Winter	I+20%	15.900	15.436	0.736	0.000	0.09		1.166	0.4	5.2	SURCHARGED
SW-6.009	SW-28	360	minute	100	year	Winter	I+20%	15.770	15.435	0.891	0.000	0.24		319.247	0.8	15.0	SURCHARGED
SW-6.010	SW-29	2160	minute	100	year	Winter	I+20%	16.055	14.235	-0.203	0.000	0.23		0.289	0.8	15.0	OK
SW-6.011	SW-30	2160	minute	100	year	Winter	I+20%	15.117	14.105	-0.203	0.000	0.23		0.289	0.8	15.0	OK
SW-12.000	SW-31	360	minute	100	year	Winter	I+20%	15.000	14.085	-0.300	0.000	0.00		0.000	0.0	0.0	OK
SW-12.001	SW-32	360	minute	100	year	Winter	I+20%	15.000	14.035	-0.300	0.000	0.00		0.000	0.0	0.0	OK
SW-6.012	SW-33	2160	minute	100	year	Winter	I+20%	15.100	13.952	-0.204	0.000	0.23		0.472	0.8	15.0	OK

APPENDIX C. WASTEWATER CALCULATIONS & DESIGN NETWORK TABLES

- As per Irish Water Code of Practice for Wastewater Infrastructure, IW-CDS-5030-03
- Network Design Tables

Appendix C

Wastewater Calculations & Design Network Tables

O'Connor Sutton Cronin		Page 1
9 Prussia Street	PROJECT No. B861	
Dublin 7		
Ireland	RESIDENTIAL DEVELOPMENT BEARNA	Micro
Date 14/05/2020	Designed by RP	Drainage
File B861_MD DESIGN DRAINAGE_20200514 (NO CONFLICT	.MDX Checked by MK	Dialitaye
XP Solutions	Network 2018.1	
	FOUL SEWERAGE DESIGN	
	<u>Design Criteria for Wastewater</u>	
Pi	e Sizes STANDARD Manhole Sizes STANDARD	
	Domestic (l/s/ha) 0.00 Maximum Backdrop Height (m) 20.0 Domestic Peak Flow Factor 6.00 Min Design Depth for Optimisation (m) 1.2 Plow / Climate Change (%) 10 Min Vel for Auto Design only (m/s) 1 Designed with Level Soffits Designed with Level Soffits	200
Ne	work Design Table for Wastewater	
PN Length Fall Slo (m) (m) (1:	e Area Houses Base k HYD DIA Section Type Auto) (ha) Flow (l/s) (mm) SECT (mm) Design	
WW-1.000 32.718 0.164 200	0 0.000 12 0.0 1.500 o 225 Pipe/Conduit 🔒	
WW-2.000 32.597 0.163 200	0 0.000 8 0.0 1.500 o 225 Pipe/Conduit	
WW-1.001 19.603 0.716 27	4 0.000 2 0.0 1.500 o 225 Pipe/Conduit 🔐	
WW-1.002 17.526 0.466 37	6 0.000 3 0.0 1.500 o 225 Pipe/Conduit 💣	
WW-1.003 21.713 0.190 114	3 0.000 4 0.0 1.500 o 225 Pipe/Conduit 💣	
	<u>Network Results Table</u>	
PN US/IL Σ Ar	a Σ Base Σ Hse Add Flow P.Dep P.Vel Vel Cap Flow	
	Flow $(1/s)$ $(1/s)$ (mm) (m/s) $(1/s)$ $(1/s)$	
WW-1.000 21.396 0.0	0 0.0 12 0.0 17 0.26 0.81 32.2 0.4	
WW-2.000 21.007 0.0	0.0 8 0.0 14 0.23 0.81 32.2 0.2	
TTT 1 001 00 044 0 0		
WW-1.001 20.844 0.0 WW-1.002 20.128 0.0		
WW-1.002 20.120 0.0		
	©1982-2018 Innovyze	

O'Connor Sutton Cronin											F	age 2
9 Prussia Street				P	ROJECT	No. B861						
Dublin 7												
Ireland				R	ESIDEN	TIAL DEVE	LOPMEI	NT BE.	ARNA			Micro
Date 14/05/2020				D	esigne	d by RP						Drainage
File B861_MD DESIGN DRAINAGE_202005	14 (NO	CONFL	ICT).M	1DX C	hecked	by MK						Diamage
XP Solutions				N	etwork	2018.1					·	
			Netw	ork D	esign '	Table for	Waste	ewate	<u>r</u>			
PN	-		-		Houses		k			Section Type		
	(m)	(m)	(1:X)	(ha)		Flow (l/s)	(mm)	SECT	(mm)		Design	
WW-3.00	0 41.291	0.206	200.0	0.000	11	0.0	1.500	0	225	Pipe/Conduit	÷ 🔒	
	1 18.248				2		1.500			Pipe/Conduit		
WW-3.00	2 4.319	0.022	200.0	0.000	0	0.0	1.500	0	225	Pipe/Conduit	e 🐨	
WW-1.00	4 59.245	0.296	200.0	0.000	3	0.0	1.500	0	225	Pipe/Conduit	ď	
WW-4.00	0 19.680	0.131	150.0	0.000	6	0.0	1.500	0	225	Pipe/Conduit	÷ 🔒	
WW-1.00	5 71.660	2.312	31.0	0.000	14	0.0	1.500	0	225	Pipe/Conduit	ď	
WW-5.00	0 11.776	0.059	200.0	0.000	2	0.0	1.500	0	225	Pipe/Conduit	: 👌	
WW-5.00	1 8.188	0.041	200.0	0.000	0	0.0	1.500	0	225	Pipe/Conduit		
				Ne	twork 1	Results Ta	able_					
	PN U	s/IL 3	: Area	Σ Ba	se ΣF	ise Add Flo	w P.De	p P.Ve	al v	el Cap Fl	.ow	
		(m)	(ha)							/s) (1/s) (1		
សាស-	-3.000 18	8.673	0.000		0.0	11 0.	0 1	7 0.2	26 0	.81 32.2	0.3	
	-3.001 18					13 0.					0.4	
WW-	-3.002 18	8.375	0.000		0.0	13 0.	0 1	8 0.2	27 0	.81 32.2	0.4	

©1982-2018 Innovyze

45

6

65

2

0.2

0.0

0.1 32 0.40 0.81 32.2 1.4

0.0 12 0.23 0.94 37.2 0.2

0.0 8 0.15 0.81 32.2 0.1

25 0.86 2.07 82.1 2.0

8 0.15 0.81 32.2 0.1

0.0

0.0

0.0

0.0

0.0 2

WW-1.004 18.354 0.000

WW-4.000 19.120 0.000

WW-1.005 18.057 0.000

WW-5.000 16.282 0.000

WW-5.001 16.223 0.000

O'Connor Sutton Cronin		Page 3
9 Prussia Street	PROJECT No. B861	
Dublin 7		
Ireland	RESIDENTIAL DEVELOPMENT BEARNA	Micro
Date 14/05/2020	Designed by RP	Drainage
File B861_MD DESIGN DRAINAGE_20200514 (NO CONFLICT).MDX	Checked by MK	Diamaye
XP Solutions	Network 2018.1	

Network Design Table for Wastewater

PN	Length (m)	Fall (m)	Slope (1:X)	Area (ha)	Houses	ise (l/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
WW-6.000	14.115	0.101	140.0	0.000	4	0.0	1.500	0	225	Pipe/Conduit	0
WW-5.002	35.101	0.351	100.0	0.000	7	0.0	1.500	0		Pipe/Conduit	ď
WW-5.003	9.671	0.097	100.0	0.000	1	0.0	1.500	0	225	Pipe/Conduit	6
WW-1.006	48.967	0.245	200.0	0.000	7	0.0	1.500	0		Pipe/Conduit	ď
WW-1.007	8.766	0.044	200.0	0.000	0	0.0	1.500	0	225	Pipe/Conduit	6
WW-1.008	67.903	0.340	200.0	0.000	1	0.0	1.500	0	225	Pipe/Conduit	Ē.
WW-1.009	11.992	0.060	200.0	0.000	0	0.0	1.500	0	225	Pipe/Conduit	đ đ
WW-7.000	54.996	1.399	39.3	0.000	14	0.0	1.500	0	225	Pipe/Conduit	ð
WW-7.001	27.907	0.997	28.0	0.000	19	0.0	1.500	0	225	Pipe/Conduit	Ť
WW-1.010	5.031	0.025	200.0	0.000	0	0.0	1.500	0	225	Pipe/Conduit	ď

<u>Network Results Table</u>

PN	US/IL (m)	Σ Area (ha)	Σ Base Flow (l/s)	Σ Hse	Add Flow (l/s)	P.Dep (mm)	P.Vel (m/s)	Vel (m/s)	Cap (1/s)	Flow (l/s)	
WW-6.000	16.286	0.000	0.0	4	0.0	10	0.21	0.97	38.5	0.1	
WW-5.002 WW-5.003		0.000 0.000	0.0	13 14	0.0	15 16	0.34 0.35	1.15 1.15	45.6 45.6	0.4 0.4	
WW-1.006 WW-1.007 WW-1.008 WW-1.009	15.490 15.446	0.000 0.000 0.000 0.000	0.0 0.0 0.0 0.0	86 86 87 87	0.2 0.2 0.2 0.2	44 44 44 44	0.49 0.49 0.49 0.49	0.81 0.81 0.81 0.81	32.2 32.2 32.2 32.2	2.7 2.7 2.7 2.7	
WW-7.000 WW-7.001 WW-1.010	16.125	0.000 0.000 0.000	0.0 0.0 0.0	14 33 120	0.0 0.1 0.3	13 17 52	0.49 0.72 0.54	1.83 2.17 0.81	72.9 86.4 32.2	0.4 1.0 3.7	

©1982-2018 Innovyze

												Page 4
) Prussia Street				F	ROJECT	No. B861						
Dublin 7												
Ireland				F	RESIDENT	TIAL DEVE	LOPMEN	NT BE.	ARNA			Micro
Date 14/05/2020				E	esigned	d by RP						
File B861 MD DESIGN DRAINAGE 2020051	L4 (NO	CONFL	ICT).N	1DX C	hecked	by MK						Drainage
 XP Solutions						2018.1						
			<u>Netw</u>	ork D	esign 1	Table for	Waste	ewate	r			
PN	Length	Fall	Slope	Area	Houses	Base	k	HYD	DIA	Section Type	Auto	
	(m)	(m)	(1:X)	(ha)		Flow (l/s)	(mm)	SECT	(mm)		Design	
WW-1.011	L 8.478	0.042	200.0	0.000	0	0.0	1.500	0	225	Pipe/Conduit	ď	
WW-1.012	2 23.235	0.116	200.0	0.000	0	0.0	1.500	0	225	Pipe/Conduit		
WW-1.013	3 27.232	0.136	200.0	0.000	0	0.0	1.500	0	225	Pipe/Conduit	ď	
WW-1.014	1 10.758	0.054	200.0	0.000	0	0.0	1.500	0	225	Pipe/Conduit	Ū.	
WW-1.015	5 19.526	0.112	175.0	0.000	0	0.0	1.500	0	225	Pipe/Conduit		
WW-1.016	3.025	0.015	200.0	0.000	0	0.0	1.500	0	225	Pipe/Conduit	v	
WW-8.000	46.091	0.230	200.0	0.000	1	0.0	1.500	0	225	Pipe/Conduit	0	
WW-9.000) 15.317	0.077	200.0	0.000	0	0.0	1.500	0	225	Pipe/Conduit	0	
WW-8.001	L 4.976	0.025	200.0	0.000	0	0.0	1.500	0	225	Pipe/Conduit	ď	
WW-8.002	2 32.056	0.160	200.0	0.000	0	0.0	1.500	0	225	Pipe/Conduit		
WW-8.003	3 25.747	0.129	200.0	0.000	0	0.0	1.500	0	225	Pipe/Conduit		
				Ne	twork B	Results Ta	able					
WW-8.003	3 25.747	0.129	200.0					0	225	Pipe/Conduit		

WW-1.011	15.021	0.000	0.0	120	0.3	52	0.54	0.81	32.2	3.7
WW-1.012	14.979	0.000	0.0	120	0.3	52	0.54	0.81	32.2	3.7
WW-1.013	14.863	0.000	0.0	120	0.3	52	0.54	0.81	32.2	3.7
WW-1.014	14.726	0.000	0.0	120	0.3	52	0.54	0.81	32.2	3.7
WW-1.015	14.673	0.000	0.0	120	0.3	50	0.56	0.87	34.5	3.7
WW-1.016	14.561	0.000	0.0	120	0.3	52	0.54	0.81	32.2	3.7
WW-8.000	13.915	0.000	0.0	1	0.0	6	0.12	0.81	32.2	0.0
WW-9.000	14.020	0.000	0.0	0	0.0	0	0.00	0.81	32.2	0.0
WW-8.001	13.685	0.000	0.0	1	0.0	6	0.12	0.81	32.2	0.0
WW-8.002	13.660	0.000	0.0	1	0.0	6	0.12	0.81	32.2	0.0
WW-8.003	13.499	0.000	0.0	1	0.0	6	0.12	0.81	32.2	0.0

©1982-2018 Innovyze

O'Connor Sutton Cronin		Page 5
9 Prussia Street	PROJECT No. B861	
Dublin 7		
Ireland	RESIDENTIAL DEVELOPMENT BEARNA	Micro
Date 14/05/2020	Designed by RP	Drainage
File B861_MD DESIGN DRAINAGE_20200514 (NO CONFLICT).MDX	Checked by MK	Diamaye
XP Solutions	Network 2018.1	

Network Design Table for Wastewater

Length	Fall	Slope	Area	Houses	Ba	ise	k	HYD	DIA	Section Type	Auto
(m)	(m)	(1:X)	(ha)		Flow	(l/s)	(mm)	SECT	(mm)		Design
5.813	0.029	200.0	0.000	0		0.0	1.500	0	225	Pipe/Conduit	6
22.098	0.110	200.0	0.000	0		0.0	1.500	0	225	Pipe/Conduit	ď
25.778	0.129	200.0	0.000	0		0.0	1.500	0	225	Pipe/Conduit	Ť
28.668	0.143	200.0	0.000	0		0.0	1.500	0	225	Pipe/Conduit	ď
31.150	0.156	200.0	0.000	0		0.0	1.500	0	225	Pipe/Conduit	ď
37.306	0.187	200.0	0.000	0		0.0	1.500	0	225	Pipe/Conduit	Ť
58.496	0.528	110.8	0.000	0		0.0	1.500	0	225	Pipe/Conduit	ď
85.000	2.240	37.9	0.000	0		0.0	1.500	0	225	Pipe/Conduit	- Č
85.000	1.107	76.8	0.000	0		0.0	1.500	0	225	Pipe/Conduit	ð
85.000	0.425	200.0	0.000	0		0.0	1.500	0	225	Pipe/Conduit	ð
26.471	0.132	200.0	0.000	0		0.0	1.500	0	225	Pipe/Conduit	ĕ
	(m) 5.813 22.098 25.778 28.668 31.150 37.306 58.496 85.000 85.000 85.000	(m)(m)5.8130.02922.0980.11025.7780.12928.6680.14331.1500.15637.3060.18758.4960.52885.0002.24085.0001.10785.0000.425	(m)(m)(1:X)5.8130.029200.022.0980.110200.025.7780.129200.028.6680.143200.031.1500.156200.037.3060.187200.058.4960.528110.885.0002.24037.985.0001.10776.885.0000.425200.0	(m)(m)(1:X)(ha)5.8130.029200.00.00022.0980.110200.00.00025.7780.129200.00.00031.1500.156200.00.00037.3060.187200.00.00058.4960.528110.80.00085.0002.24037.90.000	5.813 0.029 200.0 0.000 0 22.098 0.110 200.0 0.000 0 25.778 0.129 200.0 0.000 0 28.668 0.143 200.0 0.000 0 31.150 0.156 200.0 0.000 0 37.306 0.187 200.0 0.000 0 58.496 0.528 110.8 0.000 0 85.000 2.240 37.9 0.000 0 85.000 0.425 200.0 0.000 0	(m)(m)(1:X)(ha)Flow5.8130.029200.00.000022.0980.110200.00.000025.7780.129200.00.000028.6680.143200.00.000031.1500.156200.00.000037.3060.187200.00.000058.4960.528110.80.000085.0002.24037.90.000085.0000.425200.00.0000	(m)(m)(1:X)(ha)Flow(1/s)5.8130.029200.00.00000.022.0980.110200.00.00000.025.7780.129200.00.00000.028.6680.143200.00.00000.031.1500.156200.00.00000.037.3060.187200.00.00000.058.4960.528110.80.00000.085.0001.10776.80.00000.085.0000.425200.00.00000.0	(m)(m)(1:X)(ha)Flow(1/s)(mm)5.8130.029200.00.00000.01.50022.0980.110200.00.00000.01.50025.7780.129200.00.00000.01.50028.6680.143200.00.00000.01.50031.1500.156200.00.00000.01.50037.3060.187200.00.00000.01.50058.4960.528110.80.00000.01.50085.0002.24037.90.00000.01.50085.0000.425200.00.00000.01.500	(m)(m)(1:X)(ha)Flow(l/s)(mm)SECT5.8130.029200.00.00000.01.500022.0980.110200.00.00000.01.500025.7780.129200.00.00000.01.500028.6680.143200.00.00000.01.500031.1500.156200.00.00000.01.500037.3060.187200.00.00000.01.500058.4960.528110.80.00000.01.500085.0002.24037.90.00000.01.500085.0000.425200.00.00000.01.5000	(m)(m)(1:X)(ha)Flow(1/s)(mm)SECT(mm)5.8130.029200.00.00000.01.500022522.0980.110200.00.00000.01.500022525.7780.129200.00.00000.01.500022528.6680.143200.00.00000.01.500022531.1500.156200.00.00000.01.500022537.3060.187200.00.00000.01.500022558.4960.528110.80.00000.01.500022585.0002.24037.90.00000.01.500022585.0000.425200.00.00000.01.5000225	(m)(m)(1:X)(ha)Flow(1/s)(mm)SECT(mm)5.8130.029200.00.00000.01.5000225Pipe/Conduit22.0980.110200.00.00000.01.5000225Pipe/Conduit25.7780.129200.00.00000.01.5000225Pipe/Conduit28.6680.143200.00.00000.01.5000225Pipe/Conduit31.1500.156200.00.00000.01.5000225Pipe/Conduit37.3060.187200.00.00000.01.5000225Pipe/Conduit58.4960.528110.80.00000.01.5000225Pipe/Conduit85.0002.24037.90.00000.01.5000225Pipe/Conduit85.0000.425200.00.00000.01.5000225Pipe/Conduit

Network Results Table

PN	US/IL (m)	Σ Area (ha)	Σ Base Flow (l/s)	Σ Hse	Add Flow (1/s)	P.Dep (mm)	P.Vel (m/s)	Vel (m/s)	Cap (1/s)	Flow (l/s)
WW-8.004		0.000	0.0	1	0.0	6	0.12	0.81	32.2	0.0
WW-8.005	13.342	0.000	0.0	1	0.0	6	0.12	0.81	32.2	0.0
WW-8.006	13.231	0.000	0.0	1	0.0	6	0.12	0.81	32.2	0.0
WW-1.017	13.102	0.000	0.0	121	0.3	52	0.54	0.81	32.2	3.7
WW-1.018	12.959	0.000	0.0	121	0.3	52	0.54	0.81	32.2	3.7
WW-1.019	12.803	0.000	0.0	121	0.3	52	0.54	0.81	32.2	3.7
WW-1.020	12.617	0.000	0.0	121	0.3	45	0.67	1.09	43.4	3.7
WW-1.021	12.089	0.000	0.0	121	0.3	34	0.97	1.87	74.2	3.7
WW-1.022	9.849	0.000	0.0	121	0.3	41	0.76	1.31	52.1	3.7
WW-1.023	8.742	0.000	0.0	121	0.3	52	0.54	0.81	32.2	3.7
WW-1.024	8.317	0.000	0.0	121	0.3	52	0.54	0.81	32.2	3.7

O'Connor Sutton Cronin		Page 6
9 Prussia Street	PROJECT No. B861	
Dublin 7		
Ireland	RESIDENTIAL DEVELOPMENT BEARNA	Micro
Date 14/05/2020	Designed by RP	Drainage
File B861_MD DESIGN DRAINAGE_20200514 (NO CONFLICT).MDX	Checked by MK	Diamage
XP Solutions	Network 2018.1	-
Are	<u>a Summary for Wastewater</u>	

Pipe	Gross	Pipe Total
Number	Area (ha)	(ha)
1.000	0.000	0.000
2.000	0.000	0.000
1.001	0.000	0.000
1.001	0.000	0.000
1.003	0.000	0.000
3.000	0.000	0.000
3.001	0.000	0.000
3.002	0.000	0.000
1.004	0.000	0.000
4.000	0.000	0.000
1.005	0.000	0.000
5.000	0.000	0.000
5.001	0.000	0.000
6.000	0.000	0.000
5.002	0.000	0.000
5.003	0.000	0.000
1.006	0.000	0.000
1.007	0.000	0.000
1.008	0.000	0.000
1.009	0.000	0.000
7.000	0.000	0.000
7.001	0.000	0.000 0.000
1.010	0.000	0.000
1.011	0.000	0.000
1.012	0.000	0.000
1.013	0.000	0.000
1.014	0.000	0.000
1.016	0.000	0.000
8.000	0.000	0.000
9.000	0.000	0.000
8.001	0.000	0.000
8.002	0.000	0.000
8.003	0.000	0.000
8.004	0.000	0.000
©198	32-2018 I	nnovyze

O'Connor Sutton Cronin		Page 7				
9 Prussia Street	PROJECT No. B861					
Dublin 7						
Ireland	RESIDENTIAL DEVELOPMENT BEARNA	Micro				
Date 14/05/2020	Designed by RP					
File B861_MD DESIGN DRAINAGE_20200514 (NO CONFLICT).MDX	Checked by MK	Drainage				
XP Solutions	Network 2018.1					
<u>Area Summary for Wastewater</u> Pipe Gross Pipe Total Number Area (ha) (ha)						

0.000	0.000
0.000	0.000
0.000	0.000
0.000	0.000
0.000	0.000
0.000	0.000
0.000	0.000
0.000	0.000
0.000	0.000
0.000	0.000
Total	Total
0.000	0.000
	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 Total

Free Flowing Outfall Details for Wastewater

Outfall	Outfall	C. Level	I. Level	Min	D,L	W
Pipe Number	Name	(m)	(m)	I. Level	(mm)	(mm)
				(m)		
WW-1.024	WW-Outfall	10.260	8.184	0.000	0	0

APPENDIX D. IRISH WATER CORRESPONDENCE

- Confirmation of Feasibility Letter
- Statement of Design Acceptance

Appendix D

Irish Water Correspondence

Fred Fullard Burkeway Homes c/o David Goaley O Connor Sutton Cronin

21 November 2019

Dear Fred Fullard,

Uisce Éireann Bosca OP 448 Oifig Sheachadta na Cathrach Theas Cathair Chorcaí

Irish Water PO Box 448, South City Delivery Office, Cork City.

www.water.ie

Re: Connection Reference No CDS19008110 pre-connection enquiry -Subject to contract | Contract denied

Connection of a proposed development comprising of 120 No. Housing Units and an existing development of 21 housing units at Truskey East, Barna

Irish Water has reviewed your pre-connection enquiry in relation to water and wastewater connections for a proposed development of 120 No. Housing Units and a wastewater connection for an existing 21 No. housing unit development at Truskey East, Barna, Co. Galway.

Based upon the details that you have provided with your pre-connection enquiry and on the capacity currently available in the network(s), as assessed by Irish Water, we wish to advise you that, subject to a valid connection agreement being put in place, your proposed connection to the Irish Water network(s) can be facilitated.

A wastewater connection can be facilitated for the total 141 No. housing units (proposed and existing) to the existing 300mm Irish Water Foul Sewer at a point approximately 340m to the south of the entrance to the existing housing estate.

Please be aware that Irish Water is now responsible for the delivery of the connection related works in the public and third party domains including wastewater and watermain network extensions and connections. The costs and conditions associated with the connection would be detailed in a connection offer at connection application stage. The customer would be responsible for the costs associated with the provision of a network extension and connection to their development site. Further information on connection charges is available at https://www.water.ie/connections/information/connection-charges/.

A watermain connection to the existing Irish Water watermain network (which exists along the road fronting the existing housing estate) can be facilitated. The feasibility analysis undertaken by Irish Water as part of the pre-connection enquiry process relates only to the capacity of the Irish Water owned infrastructure to cater for the demand of the proposed development. The confirmation of feasibility does not extend to your fire flow requirements. To guarantee a flow to meet the Fire Authority requirements you should provide adequate fire storage capacity within your development. The watermain network serving the existing Cnoc Fraoigh Housing estate is privately owned, it ultimately connects to the Irish Water watermain network which runs along the public road. Should you intend to connect via this private network you will require permission from the third party owners and it will be your responsibility to confirm that the private watermain infrastructure has capacity, is structurally adequate and provides an adequate service for your demands and that of the existing housing estate development.

Stiúrthóirí / Directors: Cathal Marley (Chairman), Niall Gleeson, Eamon Gallen, Brendan Murphy, Michael G. O'Sullivan, Maria O'Dwyer, Yvonne Harris Oifig Chláraithe / Registered Office: Teach Colvill, 24-26 Sráid Thalbóid, Balle Átha Cliath 1, D01 NP86 / Colvill House, 24-26 Talbot Street, Dublin 1, D01 NP86 Is culdeachta ghníomhaíochta ainmnithe atá faoi theorainn scaireanna é Uisce Éireann / Irish Water is a designated activity company, limited by shares. Uimhir Chláraithe in Éirinn / Registered in Ireland No.: 530363

Strategic Housing Development

Irish Water notes that the scale of this development may dictate that it is subject to the Strategic Housing Development planning process. Therefore in advance of submitting your full application to An Bord Pleanala for assessment, you must have reviewed this development with Irish Water and received a Statement of Design Acceptance in relation to the layout of water and wastewater services. A design proposal for the water and/or wastewater infrastructure can be submitted to cdsdesignqa@water.ie for assessment. All infrastructure should be designed and installed in accordance with the Irish Water Codes of Practice and Standard Details.

The development will be subject to Irish Water's Quality Assurance Requirements for Design and Field Inspections. The overall Quality Assurance requirements will be incorporated into a Connection Agreement at connection application stage as part of a Connection Offer from Irish Water. Please note there is a requirement for wayleaves to be provided along the routes of watermain and wastewater pipes in favour of Irish Water as part of the Connection Agreement. This is to facilitate the vesting of the watermain and wastewater infrastructure. This wayleave requirement extends to the arterial route of connection to the Irish Water network should a connection be proposed via third party/private infrastructure. Further guidance in relation to IW design requirements is available at https://www.water.ie/connections/developer-services/QA-Design-Req-Manual.pdf.

You are advised that this correspondence does not constitute an offer in whole or in part to provide a connection to any Irish Water infrastructure and is provided subject to a connection agreement being signed at a later date.

A connection agreement can be applied for by completing the connection application form available at **www.water.ie/connections**. Irish Water's current charges for water and wastewater connections are set out in the Water Charges Plan as approved by the Commission for Regulation of Utilities.

If you have any further questions, please contact James O Malley from the design team at jomalley@water.ie. For further information, visit <u>www.water.ie/connections.</u>

Yours sincerely,

M Duge

Maria O'Dwyer Connections and Developer Services Fred Fullard

10 July 2020

UISCE EIREANN : IRISH WATER

Uisce Éireann Bosca OP 448 Oifig Sheachadta na Cathrach Theas Cathair Chorcaí

Irish Water PO Box 448, South City Delivery Office, Cork City.

www.water.ie

Re: Design Submission for Truskey East, Barna, Co. Galway (the "Development") (the "Design Submission") / Connection Reference No: CDS19008110

Dear Fred Fullard,

Many thanks for your recent Design Submission.

We have reviewed your proposal for the connection(s) at the Development. Based on the information provided, which included the documents outlined in Appendix A to this letter, Irish Water has no objection to your proposals.

This letter does not constitute an offer, in whole or in part, to provide a connection to any Irish Water infrastructure. Before you can connect to our network you must sign a connection agreement with Irish Water. This can be applied for by completing the connection application form at <u>www.water.ie/connections</u>. Irish Water's current charges for water and wastewater connections are set out in the Water Charges Plan as approved by the Commission for Regulation of Utilities (CRU)(<u>https://www.cru.ie/document_group/irish-waters-water-charges-plan-2018/</u>).

You the Customer (including any designers/contractors or other related parties appointed by you) is entirely responsible for the design and construction of all water and/or wastewater infrastructure within the Development which is necessary to facilitate connection(s) from the boundary of the Development to Irish Water's network(s) (the "**Self-Lay Works**"), as reflected in your Design Submission. Acceptance of the Design Submission by Irish Water does not, in any way, render Irish Water liable for any elements of the design and/or construction of the Self-Lay Works.

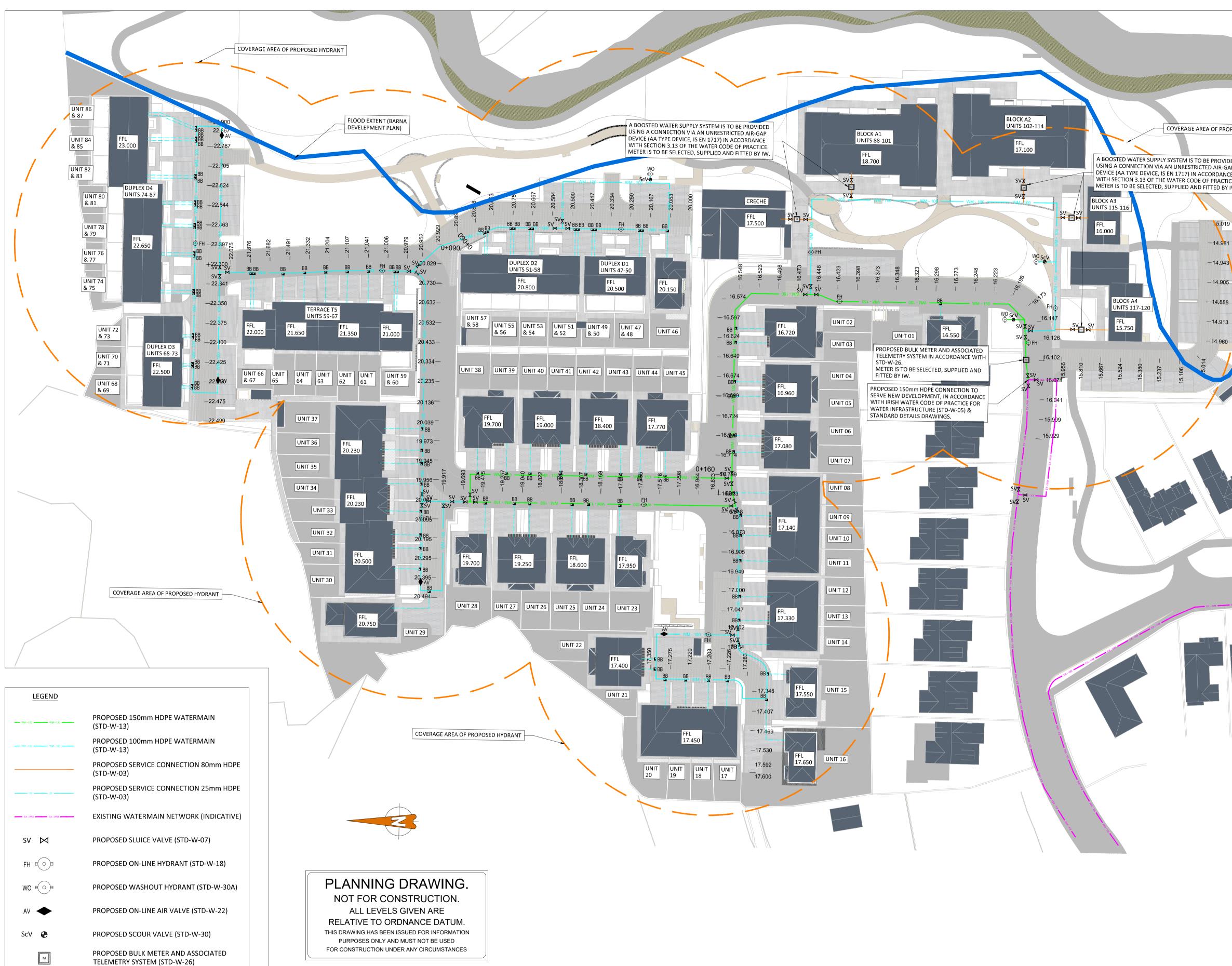
If you have any further questions, please contact your Irish Water representative: Name: James O'Malley Phone: 094 90 43310 Email: jomalley@water.ie

Yours sincerely,

M Buyes

Maria O'Dwyer Connections and Developer Services

Appendix A


Document Title & Revision

- B861-OCSC-XX-XX-C-DR-0550-A1- Rev. C01 WATERMAIN LAYOUT
- B861-OCSC-XX-XX-C-DR-0502 A1 Rev.C03 WASTEWATER NETWORK LAYOUT
- B861-OCSC-XX-XX-C-DR-0540 A1 Rev.C03 PUBLIC ROAD DRAINAGE LAYOUT
- B861-OCSC-XX-XX-C-DR-0511 A1 Rev.C02 WASTEWATER LONG SECTIONS SHEET 02 OF 04
- B861-OCSC-XX-XX-C-DR-0512 A1 Rev.C03 WASTEWATER LONG SECTIONS SHEET 03 OF 04

Standard Details/Code of Practice Exemption: N/A

For further information, visit www.water.ie/connections

<u>Notwithstanding any matters listed above, the Customer (including any appointed</u> <u>designers/contractors, etc.) is entirely responsible for the design and construction of the Self-Lay</u> <u>Works.</u> Acceptance of the Design Submission by Irish Water will not, in any way, render Irish Water liable for any elements of the design and/or construction of the Self-Lay Works.

ORDNANCE SURVEY OF IRELAND LICENCE NO. EN0000820 © GOVERNMENT OF IRELAND

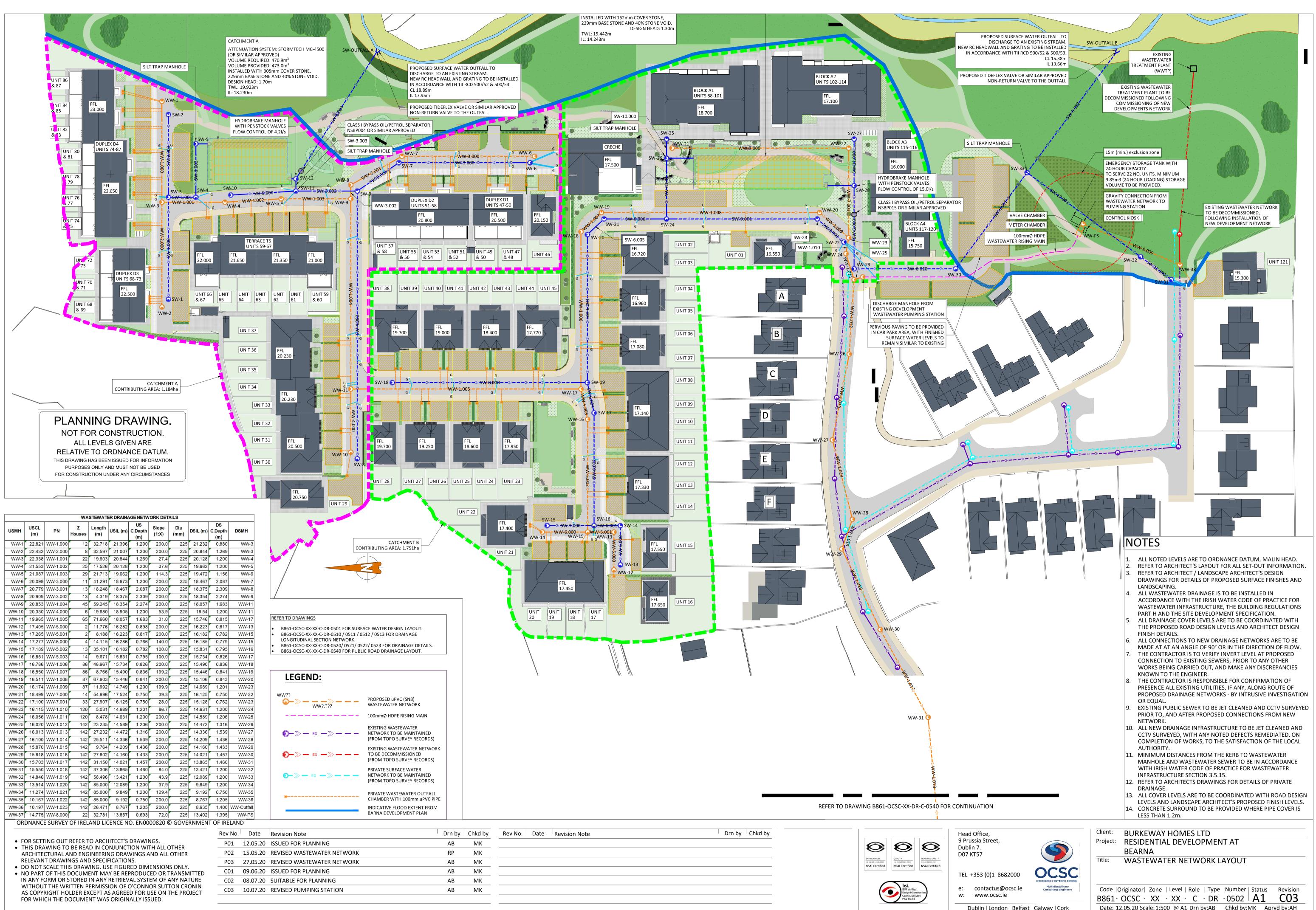
PROPOSED BOUNDARY BOX (STD-W-03)

TELEMETRY SYSTEM (STD-W-26)

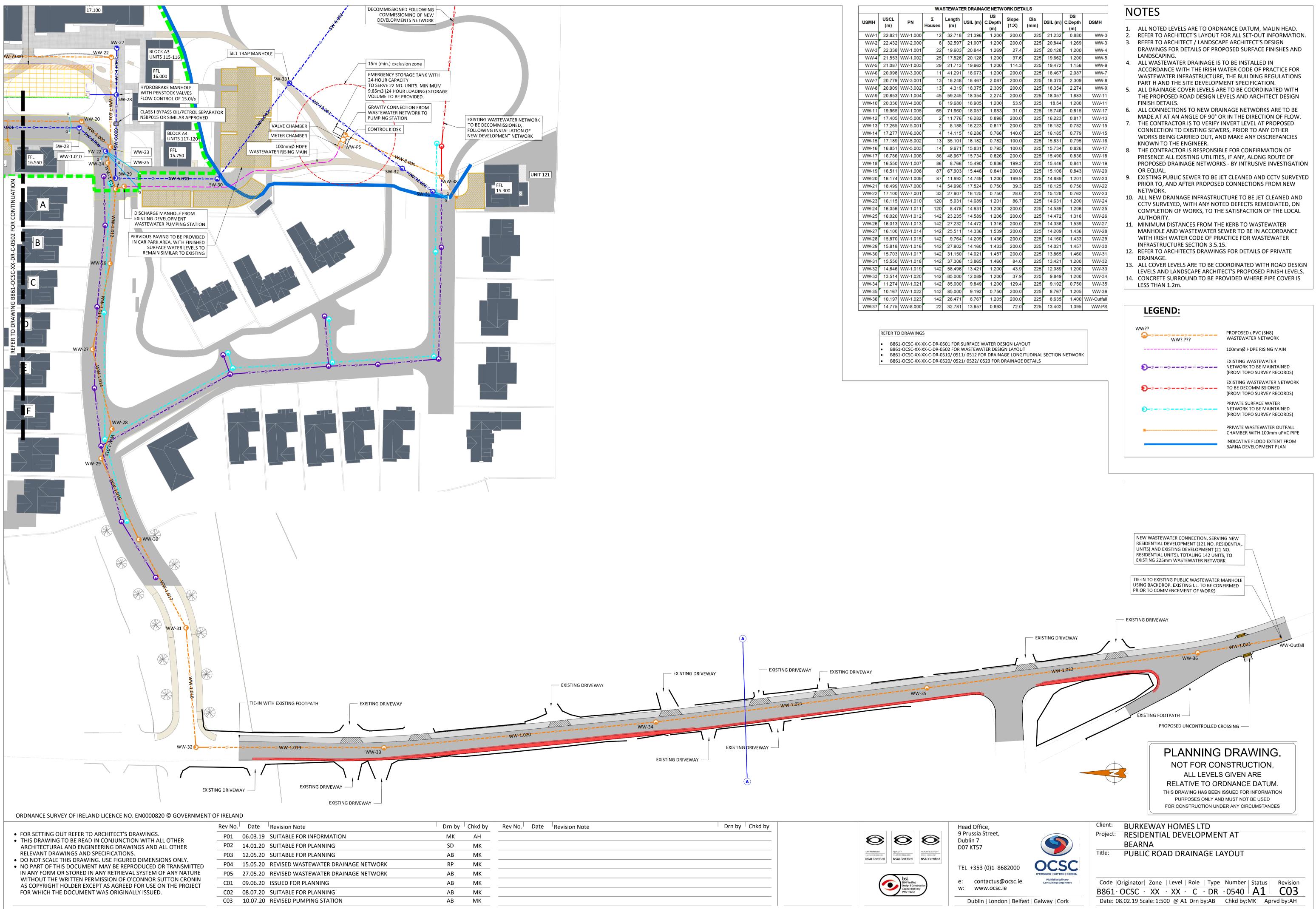
• FOR SETTING OUT REFER TO ARCHITECT'S DRAWINGS. • THIS DRAWING TO BE READ IN CONJUNCTION WITH ALL OTHER ARCHITECTURAL AND ENGINEERING DRAWINGS AND ALL OTHER RELEVANT DRAWINGS AND SPECIFICATIONS.

BB

• DO NOT SCALE THIS DRAWING. USE FIGURED DIMENSIONS ONLY. • NO PART OF THIS DOCUMENT MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM OR STORED IN ANY RETRIEVAL SYSTEM OF ANY NATURE WITHOUT THE WRITTEN PERMISSION OF O'CONNOR SUTTON CRONIN AS COPYRIGHT HOLDER EXCEPT AS AGREED FOR USE ON THE PROJECT FOR WHICH THE DOCUMENT WAS ORIGINALLY ISSUED.

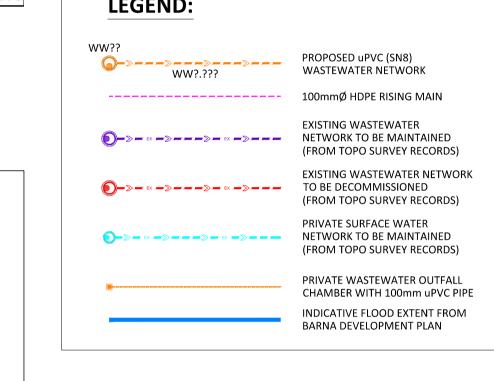

ev No.	Date	Revision Note	Drn by	Chkd by
P01	10.01.20	ISSUED FOR INFORMATION	SD	MK
P02	14.01.20	SUITABLE FOR PLANNING	SD	MK
P03	12.05.20	SUITABLE FOR PLANNING	AB	MK
P04	15.05.20	UPDATED SITE LAYOUT	RP	MK
P05	27.05.20	REVISED WATER MAIN NETWORK DESIGN	AB	MK
C01	09.06.20	ISSUED FOR PLANNING	AB	MK

Rev No. Date Revision Note	Drn by Chkd by		Head Office,
		ENVIRONMENT 13. (N /10 14001.2004 NSAI Certified NSAI Certified Later Safety Later Safety Late	9 Prussia Street, Dublin 7. D07 KT57
			TEL +353 (0)1 8
		bsi. BIM Verified Design & Construction Capital/Delivery PAS 1192-2	e: contactus w: www.ocso
			Dublin Lond

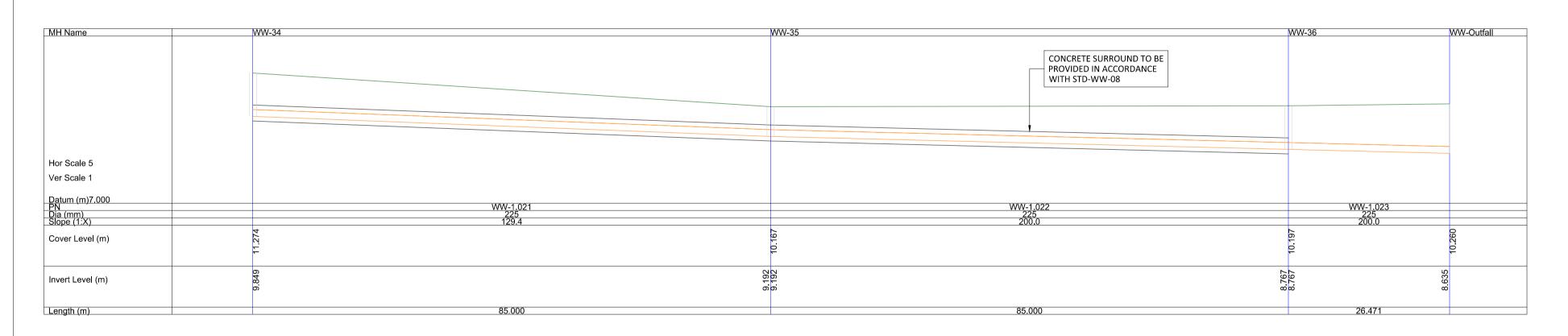

DPOSED HYDRANT	
CE ICE. ' IW. 9	
	UNIT 121
PROVID	SED FIRE HYDRANT TO BE DED TO EXISTING WATER MAIN, N ACCORDANCE WITH STD-W-18
D. 101 D. 101 D. 101	
	 ALL NOTED LEVELS ARE TO ORDNANCE DATUM, MALIN HEAD. REFER TO ARCHITECT'S LAYOUT FOR ALL SET-OUT INFORMATION. REFER TO ARCHITECT / LANDSCAPE ARCHITECT'S DESIGN DRAWINGS FOR DETAILS OF PROPOSED SURFACE FINISHES AND LANDSCAPING. ALL WASTEWATER DRAINAGE IS TO BE INSTALLED IN ACCORDANCE WITH THE IRISH WATER CODE OF PRACTICE FOR WASTEWATER INFRASTRUCTURE, THE BUILDING REGULATIONS PART H AND THE SITE DEVELOPMENT SPECIFICATION. ALL DRAINAGE COVER LEVELS ARE TO BE COORDINATED WITH THE DEDEDEDED DO DEFICIAL OF DESIGN ADD D
	 THE PROPOSED ROAD DESIGN LEVELS AND ARCHITECT DESIGN FINISH DETAILS. 6. ALL CONNECTIONS TO NEW DRAINAGE NETWORKS ARE TO BE MADE AT AT AN ANGLE OF 90° OR IN THE DIRECTION OF FLOW. 7. THE CONTRACTOR IS TO VERIFY INVERT LEVEL AT PROPOSED CONNECTION TO EXISTING SEWERS, PRIOR TO ANY OTHER WORKS BEING CARRIED OUT, AND MAKE ANY DISCREPANCIES KNOWN TO THE ENGINEER. 8. THE CONTRACTOR IS RESPONSIBLE FOR CONFIRMATION OF
	 PRESENCE ALL EXISTING UTILITIES, IF ANY, ALONG ROUTE OF PROPOSED DRAINAGE NETWORKS - BY INTRUSIVE INVESTIGATION OR EQUAL. 9. EXISTING PUBLIC SEWER TO BE JET CLEANED AND CCTV SURVEYED PRIOR TO, AND AFTER PROPOSED CONNECTIONS FROM NEW NETWORK. 10. ALL NEW DRAINAGE INFRASTRUCTURE TO BE JET CLEANED AND CCTV SURVEYED, WITH ANY NOTED DEFECTS REMEDIATED, ON
	 COMPLETION OF WORKS, TO THE SATISFACTION OF THE LOCAL AUTHORITY. 11. MINIMUM DISTANCES FROM THE KERB TO WASTEWATER MANHOLE AND WASTEWATER SEWER TO BE IN ACCORDANCE WITH IRISH WATER CODE OF PRACTICE FOR WASTEWATER INFRASTRUCTURE SECTION 3.5.15. 12. REFER TO ARCHITECTS DRAWINGS FOR DETAILS OF PRIVATE DRAINAGE. 13. ALL COVER LEVELS ARE TO BE COORDINATED WITH ROAD DESIGN
	13. ALL COVER LEVELS ARE TO BE COORDINATED WITH ROAD DESIGN LEVELS AND LANDSCAPE ARCHITECT'S PROPOSED FINISH LEVELS. Client: BURKEWAY HOMES LTD Project: RESIDENTIAL DEVELOPMENT AT BEARNA Title: WATER MAIN NETWORK LAYOUT
82000 OCSSC.ie e	CodeOriginatorZoneLevelTypeRoleNumberStatusRevisionB861 - OCSC - XX - XX - C - DR - 0550A1C01

ndon | Belfast | Galway | Cork

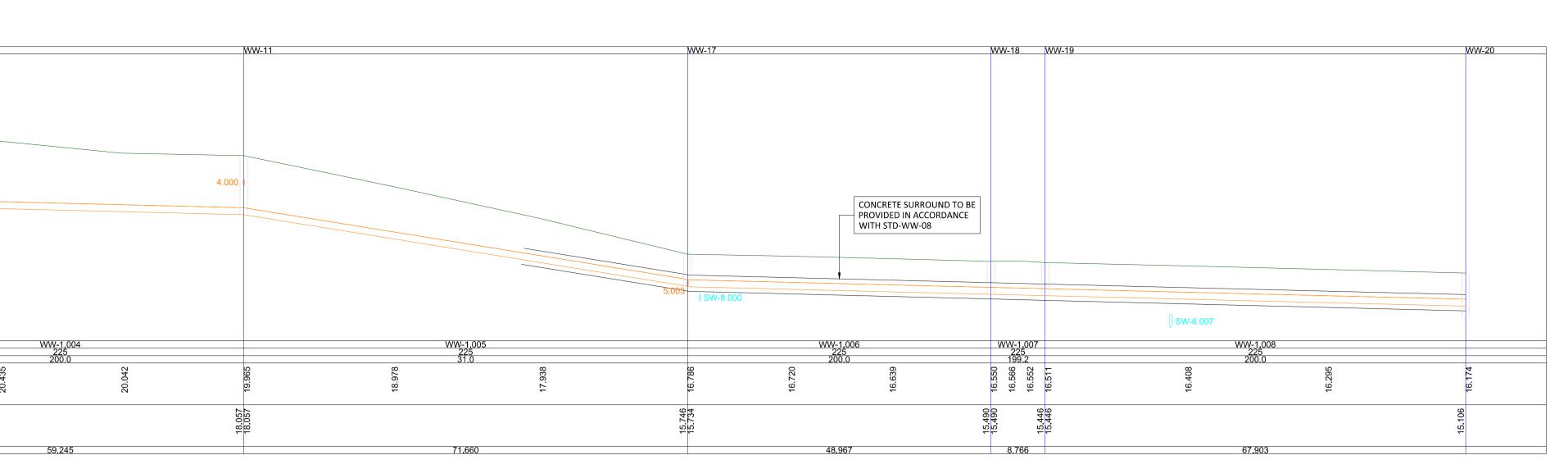
B861 OCSC · XX · XX · C · DR · 0550 |A1| CO1 Date: 10/01/20Scale:1:500 @ A1 Drn by:SD Chkd by:MK Aprvd by:AH

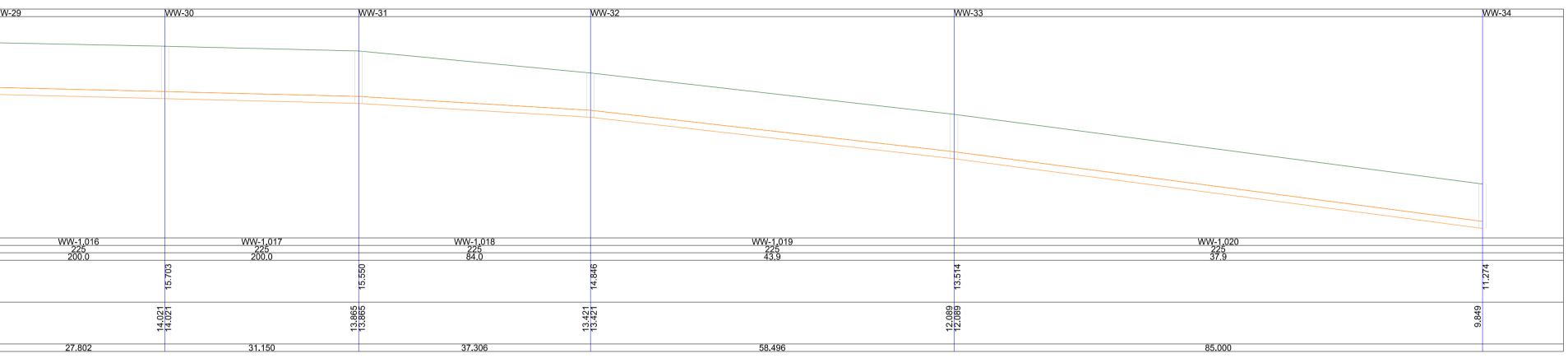


Dublin | London | Belfast | Galway | Cork

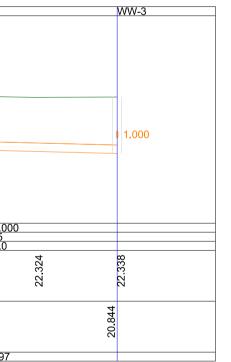

USMH	USCL (m)	PN	Σ Houses	Length (m)	USIL (m)	US C.Depth (m)	Slope (1:X)	Dia (mm)	DSIL (m)	DS C.Depth (m)	DSMH
WW-1	22.821	WW-1.000	12	32.718	21.396	1.200	200.0	225	21.232	0.880	WW-
WW-2	22.432	WW-2.000	8	32.597	21.007	1.200	200.0	225	20.844	1.269	WW-
WW-3	22.338	WW-1.001	22	19.603	20.844	1.269	27.4	225	20.128	1.200	WW-
WW-4	21.553	WW-1.002	25	17.526	20.128	1.200	37.6	225	19.662	1.200	WW-
WW-5	21.087	WW-1.003	29	21.713	19.662	1.200	114.3	225	19.472	1.156	WW-
WW-6	20.098	WW-3.000	11	41.291	18.673	1.200	200.0	225	18.467	2.087	WW-
WW-7	20.779	WW-3.001	13	18.248	18.467	2.087	200.0	225	18.375	2.309	WW-
WW-8	20.909	WW-3.002	13	4.319	18.375	2.309	200.0	225	18.354	2.274	WW-
WW-9	20.853	WW-1.004	45	59.245	18.354	2.274	200.0	225	18.057	1.683	WW-1
WW-10	20.330	WW-4.000	6	19.680	18.905	1.200	53.9	225	18.54	1.200	WW-1
WW-11	19.965	WW-1.005	65	71.660	18.057	1.683	31.0	225	15.746	0.815	WW-1
WW-12	17.405	WW-5.000	2	11.776	16.282	0.898	200.0	225	16.223	0.817	WW-1
WW-13	17.265	WW-5.001	2	8.188	16.223	0.817	200.0	225	16.182	0.782	WW-1
WW-14	17.277	WW-6.000	4	14.115	16.286	0.766	140.0	225	16.185	0.779	WW-1
WW-15	17.189	WW-5.002	13	35.101	16.182	0.782	100.0	225	15.831	0.795	WW-1
WW-16	16.851	WW-5.003	14	9.671	15.831	0.795	100.0	225	15.734	0.826	WW-1
WW-17	16.786	WW-1.006	86	48.967	15.734	0.826	200.0	225	15.490	0.836	WW-1
WW-18	16.550	WW-1.007	86	8.766	15.490	0.836	199.2	225	15.446	0.841	WW-1
WW-19	16.511	WW-1.008	87	67.903	15.446	0.841	200.0	225	15.106	0.843	WW-2
WW-20	16.174	WW-1.009	87	11.992	14.749	1.200	199.9	225	14.689	1.201	WW-2
WW-21	18.499	WW-7.000	14	54.996	17.524	0.750	39.3	225	16.125	0.750	WW-2
WW-22	17.100	WW-7.001	33	27.907	16.125	0.750	28.0	225	15.128	0.762	WW-2
WW-23	16.115	WW-1.010	120	5.031	14.689	1.201	86.7	225	14.631	1.200	WW-2
WW-24	16.056	WW-1.011	120	8.478	14.631	1.200	200.0	225	14.589	1.206	WW-2
WW-25	16.020	WW-1.012	142	23.235	14.589	1.206	200.0	225	14.472	1.316	WW-2
WW-26	16.013	WW-1.013	142	27.232	14.472	1.316	200.0	225	14.336	1.539	WW-2
WW-27	16.100	WW-1.014	142	25.511	14.336	1.539	200.0	225	14.209	1.436	WW-2
WW-28	15.870	WW-1.015	142	9.764	14.209	1.436	200.0	225	14.160	1.433	WW-2
WW-29	15.818	WW-1.016	142	27.802	14.160	1.433	200.0	225	14.021	1.457	WW-3
WW-30	15.703	WW-1.017	142	31.150	14.021	1.457	200.0	225	13.865	1.460	WW-3
WW-31	15.550	WW-1.018		37.306	13.865	1.460	84.0	225	13.421	1.200	WW-3
WW-32	14.846	WW-1.019	142	58.496	13.421	1.200	43.9	225	12.089	1.200	WW-3
WW-33	13.514	WW-1.020	142	85.000	12.089	1.200	37.9	225	9.849	1.200	WW-3
WW-34	11.274	WW-1.021	142	85.000	9.849	1.200	129.4	225	9.192	0.750	WW-3
WW-35	10.167		142	85.000	9.192	0.750	200.0	225	8.767	1.205	
WW-36	10.197	WW-1.023	_	26.471	8.767	1.205	200.0	225	8.635	1.400	
WW-37	14,775		22	32.781	13.857	0.693	72.0	225	13.402	1.395	

			1		
Rev No. Date	Revision Note	Drn by Chkd by		ENVIRONMENT QUALITY HEALTH & SAFETY 15. KN 160 14001.2004 15. KN 160 9601.2004 DHSA 5 16001.2007	Head Office, 9 Prussia Street, Dublin 7. D07 KT57
				NSAI Certified NSAI Certified NSAI Certified	TEL +353 (0)1 8
				bsi. BIM Verified Design 6 Construction Capital/Delivery PAS 1192-2	e: contactus w: www.ocso
					Dublin Lond


MH Name	WW-1		WW-3	WW	/-4	WW-5		WW-9	
		2.000	≬ SW-1.000						
								3.002	
Hor Scale 5									
Ver Scale 1									
Datum (m)15.726		4 000	1000/ 1 00	4	NAMA/ 4 000		M/M 4 002		
Datum (m)15.726 PN Dia (mm) Slope (1:X)	22	1.000 25 0.0	WW-1.00 225 27.4		WW-1.002 225 37.6		WW-1.003 225 114.3		
Cover Level (m)	22.821	22.469	22.338 22.069	21.820 21.553	21.354 21.197	21.087	21.003 20.961	20.853	20.435
Invert Level (m)	21.396	21.232	20.844	20.128 20.128		19.662 19.662		19.472	
Length (m)	32.	718	19.603		17.526		21.713		

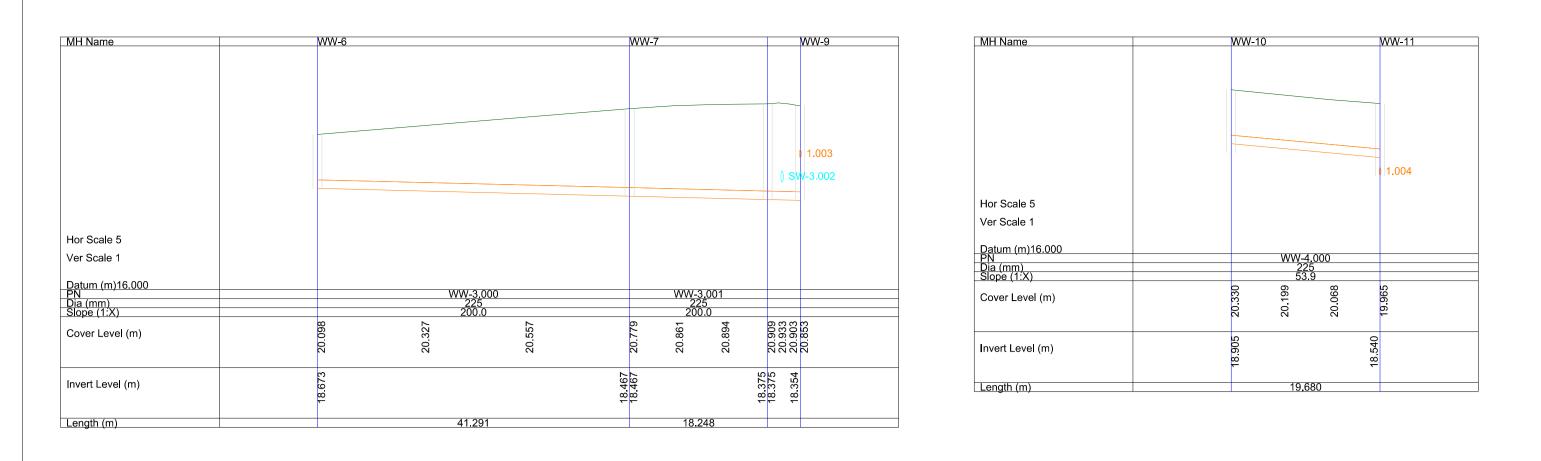

MH Name	WW-20	WW-24	WW-25	WW-26	WW-2	.7	WW-28	WW-2
	7.001 🕴							
Hor Scale 5								
Ver Scale 1								
Datum (m)10.274 PN Dia (mm) Slope (1:X)	M/M/ 1 000	10/10/ 1 011	1012	10/10/	1 012	10/0/ 1 01/	VA/VA/ 1 015	
Dia (mm)	WW-1.009 225 199.9	WW-1.011 225 200.0	WW-1.012 225 200.0	2	-1.013 225 00.0	WW-1.014 225 200.0	WW-1.015 225 200.0	
Slope (1:X)	199.9	200.0	200.0	2(200.0	200.0	
Cover Level (m)	16.174 16.187 16.187 16.167 16.157	16.134 16.056 16.105 16.073	16.020 16.015 15.936	16.013 15.936	15.971 16.100		5.870	5.818
	16. 16. 16. 16. 16.	16. 16.	16. 15.	15. 15.	15.		15.	15.
	89 49 889 889 880 880 880 880 880 880 880 88	31 31	60000000000000000000000000000000000000	14.472 14.472	14.336 14.336		60	14 160 14 160
Invert Level (m)	14.749 14.689 14.689	14.631 14.631 14.631	14.589	44	4 4 8 6		14.209	44
		~~ ~	- <u>-</u>	,	÷÷		~ ~	~ ~
Length (m)	11.992	8.478	23.235		.232	25.511	9.764	_

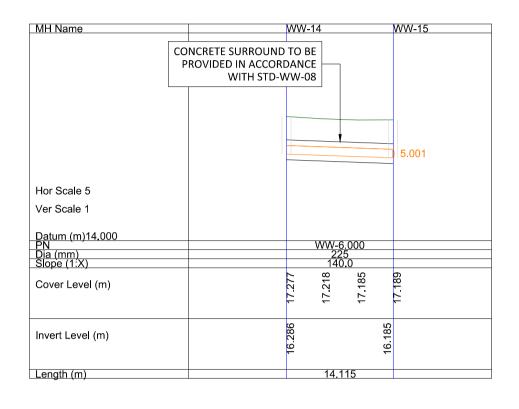
ORDNANCE SURVEY OF IRELAND LICENCE NO. EN0000820 © GOVERNMENT OF IRELAND

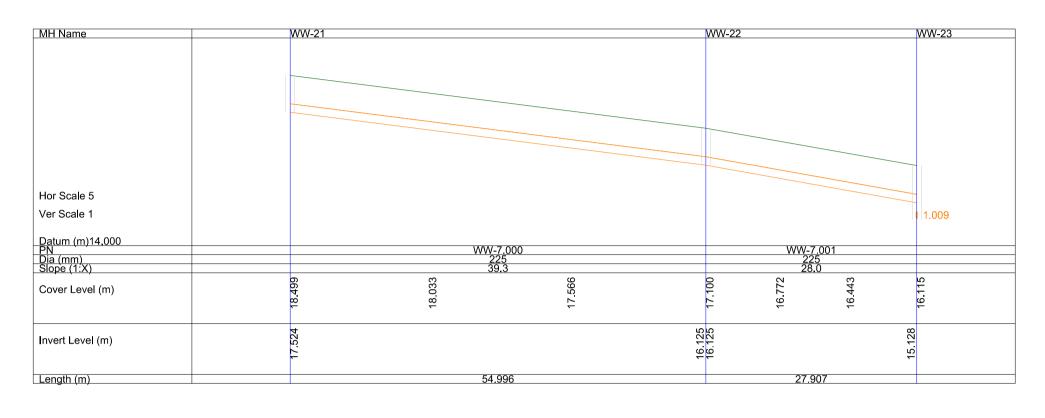

	Rev No.	Date	Revision Note	Drn by	Chkd by
 FOR SETTING OUT REFER TO ARCHITECT'S DRAWINGS. THIS DRAWING TO BE READ IN CONJUNCTION WITH ALL OTHER 	P01	14.01.20	SUITABLE FOR PLANNING	SD	МК
ARCHITECTURAL AND ENGINEERING DRAWINGS AND ALL OTHER	P02	12.05.20	SUITABLE FOR PLANNING	AB	МК
RELEVANT DRAWINGS AND SPECIFICATIONS.	P03	15.05.20	REVISED WASTEWATER LONGSECTIONS	RP	МК
 DO NOT SCALE THIS DRAWING. USE FIGURED DIMENSIONS ONLY. NO PART OF THIS DOCUMENT MAY BE REPRODUCED OR TRANSMITTED 	P04	27.05.20	REVISED WASTEWATER LONGSECTIONS	AB	МК
IN ANY FORM OR STORED IN ANY RETRIEVAL SYSTEM OF ANY NATURE	C01	09.06.20	ISSUED FOR PLANNING	AB	МК
WITHOUT THE WRITTEN PERMISSION OF O'CONNOR SUTTON CRONIN AS COPYRIGHT HOLDER EXCEPT AS AGREED FOR USE ON THE PROJECT	C02	08.07.20	SUITABLE FOR PLANNING	AB	МК
FOR WHICH THE DOCUMENT WAS ORIGINALLY ISSUED.					

MH Name	WW-2
Hor Scale 5	
Ver Scale 1	
Datum (m)19.000	WW-2.00
Dia (mm) Slope (1:X)	WW-2.00 225 200.0
Cover Level (m)	.432.378
	22.432
Invert Level (m)	200.
	24.0
	00 507
Length (m)	32.597

Rev No.	Date	Revision Note	Drn b	by Chkd by	ENVIRONMENT I.S. EN IGO 14001.2004 NSAI Certified	QUALITY LS ENISO 9002.2008 NSAI Certified	HEALTH & SAFETY UNAS 1800 1007 NSAI Certified	Head Office, 9 Prussia Street, Dublin 7. D07 KT57
								TEL +353 (0)1 86
						bsi. BIM Verified Design & Con Capital/Deli PAS 1192-2	d nstruction livery	e: contactus@ w: www.ocsc.
								Dublin Londo


PLANNING DRAWING. NOT FOR CONSTRUCTION.


ALL LEVELS GIVEN ARE RELATIVE TO ORDNANCE DATUM. THIS DRAWING HAS BEEN ISSUED FOR INFORMATION PURPOSES ONLY AND MUST NOT BE USED FOR CONSTRUCTION UNDER ANY CIRCUMSTANCES



Client:	BURKEWAY HOMES LTD
Project:	RESIDENTIAL DEVELOPMENT AT
	BEARNA
Title:	WASTEWATER LONG SECTIONS
	SHEET 02 OF 04

Code Originator				
B861 · OCSC ·	XX - XX -	C DR	-0511 🖌	A1 CO2
Date: 14.01.20 Sca	ale:1:500 @ A1 [Orn by:SD	Chkd by:MK	Aprvd by:AH

ORDNANCE SURVEY OF IRELAND LICENCE NO. EN0000820 © GOVERNMENT OF IRELAND

	Rev No.	Date	Revision Note	Drn by	Chkd by
 FOR SETTING OUT REFER TO ARCHITECT'S DRAWINGS. THIS DRAWING TO BE READ IN CONJUNCTION WITH ALL OTHER 	P01	12.05.20	SUITABLE FOR PLANNING	AB	МК
ARCHITECTURAL AND ENGINEERING DRAWINGS AND ALL OTHER	P02	15.05.20	REVISED WASTEWATER LONGSECTIONS	RP	МК
RELEVANT DRAWINGS AND SPECIFICATIONS.	P03	27.05.20	REVISED WASTEWATER LONGSECTIONS	AB	МК
 DO NOT SCALE THIS DRAWING. USE FIGURED DIMENSIONS ONLY. NO PART OF THIS DOCUMENT MAY BE REPRODUCED OR TRANSMITTED 	C01	09.06.20	ISSUED FOR PLANNING	AB	МК
IN ANY FORM OR STORED IN ANY RETRIEVAL SYSTEM OF ANY NATURE	C02	08.07.20	SUITABLE FOR PLANING	AB	МК
WITHOUT THE WRITTEN PERMISSION OF O'CONNOR SUTTON CRONIN AS COPYRIGHT HOLDER EXCEPT AS AGREED FOR USE ON THE PROJECT	C03	10.07.20	REVISED WASTEWATER LONG SECTIONS	AB	МК
FOR WHICH THE DOCUMENT WAS ORIGINALLY ISSUED.					

MH Name	WW-12	WW-13 WW-15	WW-	16 WW-17
			CONCRETE SURROUND TO PROVIDED IN ACCORDANCE WITH STD-WW-08	
		6.000 §SW-7.000		1,005
or Scale 5		1311-1.000		
er Scale 1				
atum (m)14.000	WW-5,000 225 200.0	WW-5,001 W 225 200.0	W-5,002 W 225 100.0	N-5.003 225 100.0
a (mm) ope (1:X)	200.0 Lo N- Q			100.0 ວຸ່ວງ ຜູ
over Level (m)	17.405 17.357 17.306	17.265 17.242 17.189 17.189	16.945 16.851	16.820 16.799 16.786
vert Level (m)	16.282	16.223 16.223 16.182 16.182	15.831 15.831	15.734
ength (m)	11.776	8.188	35,101	9.671

MH Name	WW-37	WW-PS
		() SW-12.001
		0.000-12.001
Hor Scale 5		
Ver Scale 1		
Datum (m)11.000	W/W/-8 000	
Datum (m)11.000 PN Dia (mm) Slope (1:X)	WW-8.000 225 72.0	
	۲۲۵.۵ ۲۲۵.۵	33
Cover Level (m)	14.775	15.022
		~
Invert Level (m)	57	02
nvert Level (m)	13.857	13.402
		~
Length (m)	32.781	

Rev No.	Date	Revision Note	Drn by	Chkd by	ENVIRONMENT Ls. tri 100 Jaon 2004 NSAI Certified	QUALITY LS EN 10 9903-2009 NSAI Certified	HEALTH & SAFETY URBA'T 16001.3007 NSAI Certified	Head Office, 9 Prussia Street, Dublin 7. D07 KT57
								TEL +353 (0)1 8
						bsi. BIM Verified Design & Con Capital/Deli PAS 1192-2	struction very	e: contactus(w: www.ocsc
					 			Dublin Lond

PLANNING DRAWING.

NOT FOR CONSTRUCTION. ALL LEVELS GIVEN ARE RELATIVE TO ORDNANCE DATUM. THIS DRAWING HAS BEEN ISSUED FOR INFORMATION PURPOSES ONLY AND MUST NOT BE USED FOR CONSTRUCTION UNDER ANY CIRCUMSTANCES

Project: RESIDENTIAL DEVELOPMENT AT BEARNA Title: WASTEWATER LONG SECTIONS SHEET 03 OF 04

Client: BURKEWAY HOMES LTD

Code |Originator| Zone | Level | Role | Type |Number | Status | Revision B861 - OCSC - XX - XX - C - DR - 0512 | A1 | CO3 Date: 12.05.20 Scale: 1:500 @ A1 Drn by:AB Chkd by:MK Aprvd by:AH

don | Belfast | Galway | Cork

APPENDIX E. TECHNICAL NOTE ON ROAD WIDTH

Appendix E

Technical Note on Road Width

TECHNICAL NOTE

BURKEWAY HOMES LTD

PROJECT NO. B861

SEPTEMBER 2019

Muitidisciplinary Consulting Engineers

TECHNICAL NOTE

L1321 FOOTPATH WORKS

BURKEWAY HOMES LTD

PROJECT NO. B861

SEPTEMBER 2019

TECHNICAL NOTE

L1321 FOOTPATH WORKS

FOR

BURKEWAY HOMES LTD

Multidisciplinary Consulting Engineers

NOTICE

This document has been produced by O'Connor Sutton Cronin & Associates for its client BURKEWAY HOMES LTD. It may not be used for any purpose other than that specified by any other person without the written permission of the authors.

DOCUMENT CONTROL & HISTORY

	Project Code B861	0riginator	X X Volume	revel XX	a File Type	C Role Type	Number 0100			Revision 104
S	tatus	Autho	rs	Checked Autho		uthorised	t	Issu	e Date	
C01 A1 P01 S3		KP			MK				29.06.2020 SEPT 2019	
	S	B861	B861 OCSC Status Autho Image: status Image: status Image: status Image: status	B861 OCSC XX Status Authors A1 KP	B861 OCSC XX XX Status Authors Check A1 KP M	B861 OCSC XX XX RP Status Authors Checked Image: Status Image: Status Image: Status Image: Status Image: S	B861 OCSC XX XX RP C Status Authors Checked Authors Authors Checked Authors	B861 OCSC XX XX RP C 0100 Status Authors Checked Authorised -	B861 OCSC XX XX RP C 0100 Si Status Authors Checked Authorised -	B861 OCSC XX XX RP C 0100 S0 Status Authors Checked Authorised Issue -

TECHNICAL NOTE

L1321 FOOTPATH WORKS

PROJECT NO. B861

TABLE OF CONTENTS

PAGE

1	INT	RODUCTION1
2	DM	URS CLASSIFICATION2
	2.1	Road Classification2
	2.2	Context4
	2.3	Carriageway7
	2.4	Proposed Footpath8
	2.5	Road Design Speeds8

1 INTRODUCTION

O'Connor Sutton Cronin & Associates (OCSC) has been commissioned by Burkeway Homes Ltd to advance the Bearna Housing Development Strategic Housing Development Application. As part of that proposal a memorandum of understanding exists between Burkeway and Galway County Council that a footpath should be constructed along the L1321 between the proposed development and Bearna village, in order to improve pedestrian connectivity.

This technical note discusses the Local Road L1321 and the proposed footpath in the context of the *Design Manual for Urban Roads and Streets* (DMURS)

2 DMURS CLASSIFICATION

2.1 Road Classification

The movement function of a street is described in DMURS using a hierarchy system that classifies streets into the following categories, as shown in Figure 3.3:

- Arterial Streets
- Link Streets
- Local Streets

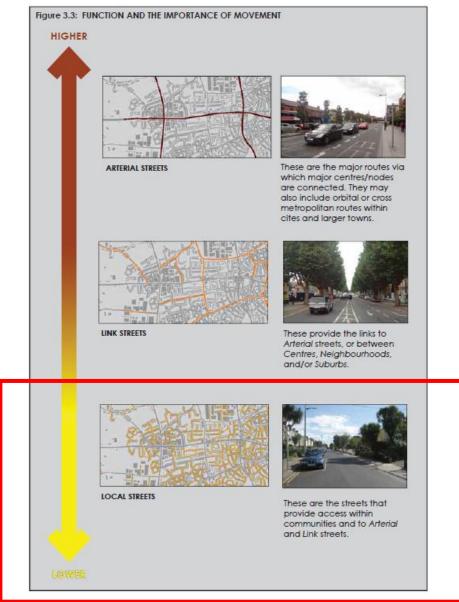


Figure 1 – DMURS Hierarchy of Streets

Under DMURS the L1321 Road is most appropriately classified as a **Local <u>Road</u>**. Table 3.1 of DMURS illustrates how this road hierarchy relates to other relevant documents.

DMURS Description	Roads Act/NRA DMRB	Traffic Management Guidelines	National Cycle Manual Distributor	
Arterial	National	Primary Distributor Roads		
Link	Regional (see note 1)	District Distributor Local Collector (see Notes 1 and 2)	Local Collector	
Local	Local	Access	Access	
Notes Note 1: Larger Regional/District Distributors may fall into the category of Arterial where they are the main links between major centres (i.e. towns) or have an orbital function. Note 2: Local Distributors may fall into the category of <i>Local</i> street where they are relatively short in length and simply link a neighbourhood to the broader street network.				

Table 3.1: Terminology used within this Manual compared with other key publications.

Figure 2 -DMURS Road Terminology

This designation is suitable as the L1321 serves to provide access to many private residencies and to the nearby Arterial and Link roads. This classification is in-line with GCC's classification of the road as an L designation road. Eleven properties have direct access onto the road in the 480m stretch from the signalised junction between the L1321 and the R336 to the proposed site entrance at Cnoc Fraoigh. 7.5km to the north of the site entrance the L1321 also joins the N59 at a simple priority junction.

2.2 Context

The L1321 serves as a transition zone from the urban centre of Bearna to the more rural lands to the north. Transition Zones are distinct from rural roads and urban areas. They tend to have many indivudal access points to private dwellings, footpaths, and have more fronting boundary walls than rural roads.

Figure 3: As individual elements of the streetscape change, the context of the street alters from rural to town.

RURAL

Boundary: hedgerow and trees Footpath: none Kerb: none Access: infrequent or limited to farmland Road width: carriageway only Street lighting: none Built form: infrequent Speed limit: should be greater than 60kph

TRANSITION ZONE¹

Boundary: hedgerow and garden hedges with occasional boundary walls and gates Footpath: commencing to one side Kerb: occasional to one side Access: increased individual access Road width: carriageway, including setback/layby Street lighting: occasional on none Built form: occasional one off buildings offset

Built form: occasional one off buildings offset from road

Speed limit: should be 50-60kph

Images: Google Street View

URBAN AREA (CITY, TOWN, VILLAGE)

Boundary: garden hedges, walls, railings, buildings

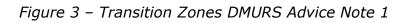
Footpath: both sides

Kerb: continuous dropped at crossings Access: individual, school and housing access

Road width: carriageway only, no setback or parking

Street lighting: one or two sides

Built form: closer to road with established building lines


Speed limit: 50kph or less

* The Transition Zone will include elements of development similar to the Rural Fridge (as defined within DMURS), or also commonly refered to as Peri-Urban areas.



Figure 4 -Bearna Context

The context of this transition zone is affirmed by the many individual accesses directly onto the road. the existing speed limit of 50kph and the many boundary walls and gates along the road. The proposed addition of the footpath for 330m on the eastern side of the L1321 will strengthen this context further. The proposed works to the L1321 are shown in the drawing overleaf and appended to this document.

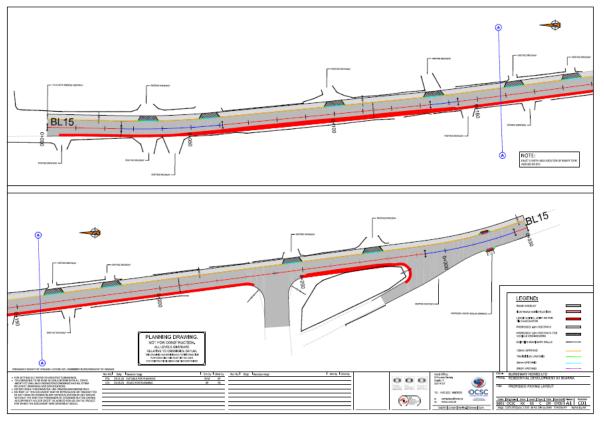


Figure 5 – Proposed Footpath Works

The works involve a slight realignment, new longitudinal construction to maintain the 5.5m carriageway width, a overlay of the existing road, the laying of a 125mm kerb, transitioning down to 25mm for vehicle access, and a 1.8m footpath on the eastern side of the road where none currently exists and provide for tying in with the 13 existing access points onto this stretch of the L1321. There will also be provided a new uncontrolled pedestrian crossing point, with associated tactile paving.

2.3 Carriageway Width

It is noted that in accordance with DMURS 5.5m is the max. appropriate width for this type of road. A narrower carriageway can be considered here (5.0m). In the opinion of OCSC 5.5m is appropriate as the route will be subject to occasional use by large road and agricultural vehicles.

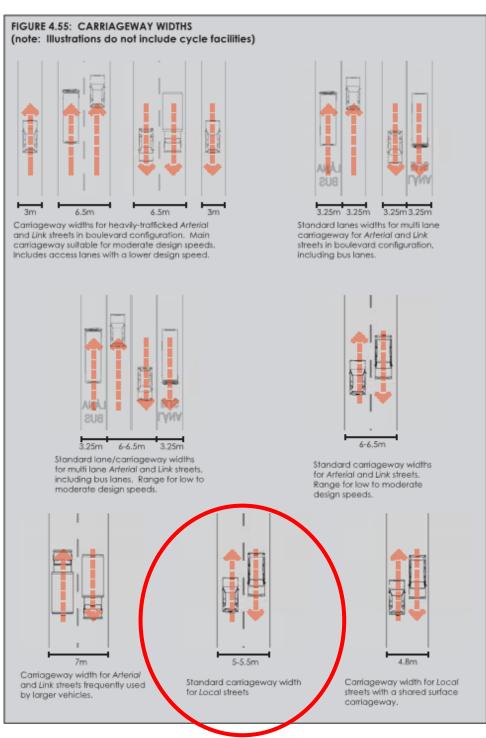
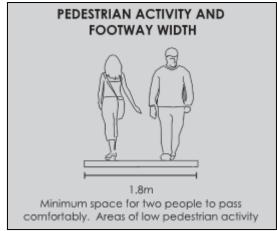
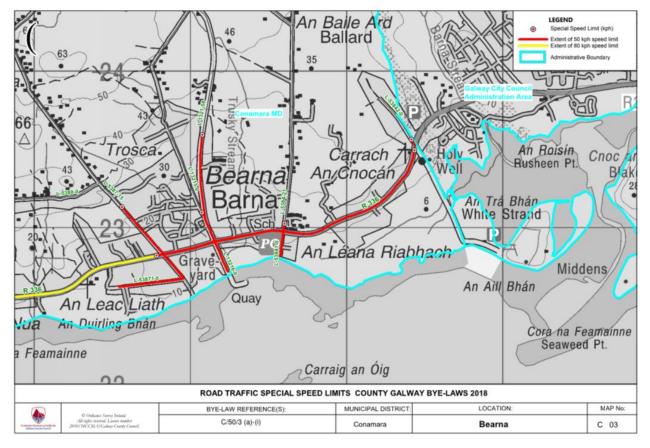


Figure 6 – DMURS Carriageway Widths



2.4 Proposed Footpath

The proposed footpath width of 1.8m is the minimum allowed under DMURS. It is considered appropriate based on the level of pedestrian activity.


2.5 Road Design Speeds

The design speed is the maximum speed at which it is envisaged/intended that the majority of vehicles will travel under normal conditions.

The current speed limits in the Bearna area are shown overleaf, from the *Road Traffic (Special Speed Limits) County Galway Bye-Laws 2018-Location Map.*

Figure 8 – Bearna Speed Limits

The L1321 has a speed limit of 50kph to a point north of the Cnoc Fraoigh junction. It is noted that the L1321 in the 50kph zone consists of a very long straight road and a high radius curve. The road width of 5.5m is considered appropriate as a wider road would serve to increase driver speed.

Report Prepared by:

MIEI

Oisín Gartlan Bachelor of Engineering Loreto Ruiz Gonzalez MSc Engineering P. Cert Road Safety Auditing Chartered Engineer (MIEI)

Reviewed and Approved by Anthony Horan, Associate Director B.E., P. Dip. Project Management, P. Cert Road Safety Auditing, Chartered Engineer, PMP, MIEI

APPENDIX F. ROAD SAFETY AUDIT

Appendix F

Road Safety Audit

Proposed Residential Development at Bearna

Stage 1 & 2 Road Safety Audit Burkeway Homes Ltd.

July 2020

Notice

This document and its contents have been prepared and are intended solely for Burkeway Homes Ltd. information and use in relation to the Proposed Residential Development at Bearna.

Atkins assumes no responsibility to any other party in respect of or arising out of or in connection with this document and/or its contents.

Revision	Purpose description	Origin- ated	Checked	Reviewed	Author- ised	Date
Rev 0	Draft Issue	JW	JW	MD	MD	04/06/2020
Rev 1	Final Issue	JW	JW	MD	MD	24/06/2020
Rev 2	Final Issue	JW	JW	MD	MD	17/07/2020

Document history

Client signoff

Client	Burkeway Homes Ltd.
Project	Proposed Residential Development at Bearna
Job number	5197317

Contents

Page
4 4
4
4
4 5
6 6 6 7 7 7 8
8 9 9 9 9 9 9 9
10 10 10 10 12

Tables

Table 1-1 - Drawing List

Figures

No table of figures entries found.

4

ī.

1. Introduction

1.1. Background

This report describes the findings of a Stage 1 & 2 Road Safety Audit associated with the Proposed Residential Development at Bearna. The Audit has been completed by Atkins on behalf of Burkeway Homes Ltd..

1.2. Site Inspection

The site inspection was carried out on Tuesday 3rd June 2020 by the Audit Team. Weather conditions during the site inspection were sunny and dry; road surfaces were dry.

1.3. The Team

The Road Safety Audit Team members were as follows:

- Team Leader: Martin Deegan BEng (Hons) MSc CEng MICE
- Team Member: Jason Walsh BEng (Hons) PCert (RSA) CEng MIEI

1.4. The Design

The following drawing was examined as part of the Road Safety Audit (RSA) process:

Drawing No	Drawing Title	Revision Status
B861-OCSC-XX- XX-C-DR-0100	General Arrangement	P02
B861-OCSC-XX- XX-C-DR-0101	Proposed Plan & Profile	P02
B861-OCSC-XX- XX-C-DR-0102	Cross Section (1 of 3)	P01
B861-OCSC-XX- XX-C-DR-0103	Cross Section (2 of 3)	P01
B861-OCSC-XX- XX-C-DR-0104	Cross Section (3 of 3)	P01
B861-OCSC-XX- XX-C-DR-0106	Proposed Levels	P02
B861-OCSC-XX- XX-C-DR-0107	Proposed Longsection (1 of 2)	P02
B861-OCSC-XX- XX-C-DR-0108	Proposed Longsection (2 of 2)	P02

Table 1-1 - Drawing List

1.5. Road Safety Audit Compliance

Procedure and Scope

This Road Safety Audit has been carried out in accordance with the procedures and scope set out in TII publication number **GE-STY-01024 - Road Safety Audit**.

As part of the road safety audit process, the Audit Team have examined only those issues within the design which relate directly to road safety.

Compliance with Design Standards

The road safety audit process is not a design check, therefore verification or compliance with design standards has not formed part of the audit process.

Minimizing Risk of Collision Occurrence

All problems described in this report are considered by the Audit Team to require action in order to improve the safety of the scheme and minimise the risk of collision occurrence.

2 Road Safety Issues Identified

2.1. Problem: Gradients on Driveways and Footpaths

Location: Along L1321 Road

Drawings Ref: B861-OCSC-XX-XX-C-DR-0101

With the installation of the proposed footpath there will be level differences between some of the high-level gardens and the proposed footway. This could result in the following:

a) Steep gradients at tie-ins between existing driveways and the proposed footway

b) Inappropriate cross falls on the proposed footway

Recommendation

The Design Team should ensure that tie-in gradients between the proposed footway and the existing driveways are minimized and fall within industry standards.

2.2. Problem: Impact on 'Over the Edge' Drainage

Location: Along L1321 Road

Drawings Ref: B861-OCSC-XX-XX-C-DR-0101

The existing road uses an 'over the edge' drainage system which will be impacted upon by the provision of raised kerbs and a new footway. This could lead to surface water being retained within the carriageway leading to potential discomfort for pedestrians and aquaplaning for vehicles.

Recommendation

The Designer should ensure that adequate drainage interventions are provided to minimize the risk of surface water being retained within the carriageway.

2.3. Problem: Footpath Connectivity

Location:

Main Development Access Junction off L1321 Road

Drawings Ref: B861-OCSC-XX-XX-C-DR-0101

It is unclear if the proposed footpath extends to the existing section of footpath provided at the main development junction. Lack of connection will result in difficulties for pedestrians and conflicts with vehicles.

Recommendation

The Designer should ensure that the connection with the existing section of footpath is provided.

2.4. Problem: **Crossing Facilities**

Location:

Main Development Access Junction off L1321 Road

B861-OCSC-XX-XX-C-DR-0101 Drawings Ref:

The existing crossing at the main development access junction does not appear to include the provision of tactile paving. This can result in difficulties for visually impaired pedestrians.

Recommendation

The Designer should ensure that the crossing is provided with appropriate tactile paving.

2.5. Problem: Provision of Pedestrian Linkage

Location: Within Development Site

Drawings Ref: B861-OCSC-XX-XX-C-DR-0100 The main pedestrian route serving the development has a break in footpath provision on the right-hand side adjacent the open space.

This could result in pedestrians walking in traffic lanes in conflicts with vehicles accessing and departing the development.

Recommendation

The Designer should provide a footpath connection at this location.

2.6. Problem: Pedestrian Crossing Facilities

Location: Within Development Site

Provisions for pedestrians to cross the road carriageway along key desire lines at internal road junctions do not appear to have been prescribed. This could lead to conflicts between pedestrians and vehicles.

Recommendation

The Design Team should provide pedestrian crossings at internal junctions to service key desire lines. Such measures might include dropped kerbs with appropriate level of tactile paving or raised crossings.

2.7. Problem: Speed Control Measures

Location: Within Development Site

Provisions for speed control measures have not been proposed, raised tables at key locations or raised crossings. Lack of speed control measures may result in inappropriate vehicle speeds.

Recommendation

The Designer should consider the use of speed control measures at key locations within the development.

2.8. Problem: Provision for Refuse Vehicle

Location:

Within Development Site

Drawings Ref: B861-OCSC-XX-XX-C-DR-0100

Refuse Vehicles may be required to manoeuvre and reverse on many of the spur streets throughout the site. Some of these spur streets do not appear to include turning heads and which could result in lengthy reversing manoeuvres.

Recommendation

The Designer should ensure adequate turning facilities are provided for Refuse Vehicles where required.

2.9. Problem: Safety of Road Users During Construction

Location: Existing Development Site

Drawings Ref: B861-OCSC-XX-XX-C-DR-0100

The passage of construction vehicles through the existing development site could lead to increased risks for residents and road users.

Recommendation

The Designer should ensure that a Construction Traffic Management Plan is developed in advance of the works commencing on site.

Audit Team Statement 3

3.1. Certification

We certify that we have examined the drawings and documents listed in Chapter 1 of this Report.

3.2. Sole Purpose

The Road Safety Audit has been carried out with the sole purpose of identifying any features of the design which could be removed or modified in order to improve the road safety aspects of the scheme.

Implementation of RSA Recommendations 3.3.

The problems identified herein have been noted in the Report together with their associated recommendations for road safety improvements. We (the Audit Team) propose that these recommendations should be studied with a view to implementation.

Audit Team's Independence to the Design Process 3.4.

No member of the Audit Team has been otherwise involved with the design of the measures audited.

Road Safety Audit Team Sign-Off 3.5.

Martin Deegan

Audit Team Leader Road Safety Engineering Team **ATKINS**

Signed:

Date:

4th June 2020

Jason Walsh Audit Team Member Road Safety Engineering Team

Signed:

Swoon Mr.

Date:

ATKINS

4th June 2020

July 2020

4. Designers Response

4.1. Preparing a Response to the Road Safety Audit

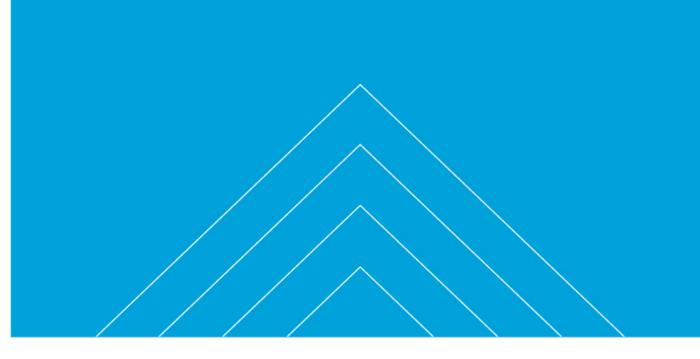
The Designer should prepare an Audit Response for each of the recommendations using the Road Safety Audit Feedback Form attached in Appendix A. When completed, this form should be signed by the Designer and returned to the Audit Team.

4.2. Returning the Feedback Form

Please return the completed Road Safety Audit Feedback Form attached in Appendix A of this report to the following email or postal address:

Email address: martin.deegan@atkinsglobal.com

Postal address: Road Safety Engineering Team Atkins 150 Airside Business Park Swords Co Dublin K67 K5W4


Telephone: 00 353 (0)1 810 8000

The Audit Team will consider the Designers response and reply indicating acceptance or otherwise of the Designers response to each recommendation.

4.3. Triggering the Need for an Exception Report

Where the Designer and the Audit Team cannot agree on an appropriate means of addressing an underlying safety issue identified as part of the audit process, an Exception Report must be prepared by the Designer on each disputed item listed in the audit report.

Appendices

Appendix A. Road Safety Audit Feedback Form

Scheme: Proposed Residential Development at Bearna

Audit Stage: Stage 1 & 2 Road Safety Audit

Date Audit Completed: 4th June 2020

	To be c	ompleted by	the Designer	To be completed by the Audit Team
Paragraph No. in Safety Audit Report	Problem accepted (yes/no)	Recommen ded measure accepted (yes/no)	Alternative measures or comments	Alternative Measures accepted by Auditors (yes/no)
2.1	Yes	Yes	To be addressed in detail design	
2.2	Yes	Yes	To be addressed in detail design	
2.3	Yes	Yes	Connections will be provided.	
2.4	Yes	Yes	To be addressed in detail design	
2.5	No	No	It's an existing road and footpath and no proposed works intended to be done at that stretch.	Yes - monitor pedestrian movements along this link for conflicts upon opening of developm
2.6	Yes	Yes	To be addressed in detail design	
2.7	No	No	Speed control measures are not required as there is no stretches of long straights.	Yes - consideration at detail design for provision of raised crossings for pedestrian priority at key locations
2.8	No	No	Autotrack has been done using the refuse truck and it works as required for waste collection.	Yes
2.9	No	No	Please note that the designer will make the client and the PSDP aware of this risk through design risk assessment and ask them to address the same through preliminary health and safety plan.	Yes

Signed by the Designer: Punit Giria Senior Engineer O'Connor Sutton Cronin

M.Dægn

Date: 19th June 2020

Date: 24th June 2020

Signed by the Audit Team Leader:

WS Atkins International Limited Atkins House 150 Airside Business Park Swords Co. Dublin K67 K5W4

Tel: +353 1 810 8000